MITSUBISHI

FX2nc-4AD Analog input block
Thank you very much for purchasing this product.
In order to handle the product properly please read this manual thoroughly before starting to use the product.

User's Manual

FX2NC

\section*{| MODEL | FX2NC-4AD |
| :--- | :--- |
| MANUAL Number | JY997D07801A |
| Date | June 2003 |}

of the User and Protection of the $\mathrm{FX}_{2} \mathrm{Nc}-4 \mathrm{AD}$ Guidelines for the Sa
This manual should be used by trained and competent personnel. The definition of such a person or persons is as tollows:
Any engineer using the product associated with this manual, should be of a Competent nature, trained and qualified to the local and national standards. These engineers should be fully aware of all aspects of safety with regards
to automated equipment.
b) Any commissioning or service engineer must be of a
trained and qualified to the local and national standards. trained and qualified to the local and national standards.
c) All operators of the completed equipment should be trained to use this
product in a safe and coordinated manner in compliance to established safety practices.
Note:The term "completed equipment' refers to a third party constructed
device which contains or uses the product associated with this manual. CE marking does not guarantee that an entire mechanical m accordance with the contents of the notification comply woith the producowed standards. Compliance to EMC standards of the entire mechanical module
should be checked by the user/ manufacturer. Standards with which this product complies
Type: Programmable Controller (Open Type Equipment)
Models : Products manufactured starting Aprii list, 2003 .

Electromagnetic Compatibility Standards (EMC)	Rema
EN61000-6-4:2001 Electromagnetic compatibility -Generic standards - Emission standard for Industrial environment	Compliance with all relevant aspects of the standard. (Radiated Emissions and Mains Terminal Voltage Emissions)
EN61000-6-2:2001 Electromagnetic compatibility -Generic standards Immunity for industrial environments.	Compliance with all relevant aspects of the standard. (RF immunity. Fast of the standard. ((RF immunity, Fast transients, ESD, Conducted, Surges, Power magnetic fields, Voltage dips and Voltage interruptions)

industrial environments.
and Voltagnelic ields, Voltage dips
For more details please contact the local

- Notes for compliance to EMC regulation.
It is necessary to install the FX RNC-4ution. a shielded metal control panel.
For further information manual concerning the FX Series, refer to the tollowing List of Further Information Manuals

Manual Name	Manual No.	Description
FX2NC		This manual contains hardw
Hardware Manual	JY992D76401	of wiring, installation and specifications for the FX2NC Series programmable controllers.
		Thi

$\begin{array}{l}\text { Programming } \\ \text { Manual II }\end{array}$	JY992D88101

explanations for the FX_{115}, KX $_{1 N}, \mathrm{FX}_{2 N}$ and
FX2NC Series programmable controllers.

1. Introduction
 digital values, and transfers them to the PLC main unit.
1) A combination of voltage and current analog inputs selectable via the PLC 2) The voltage input range can be selected within -10 to 10 V , alternatively, the
current input range can be selected within -20 to 20 mA and 4 to 20 mA . The input characteristits can be adiusted for each channel (except when
$O=2,5,8$ is set in $B F M$ \# $\#$ that disables all changes to the offset or gain). 3) The resolution is $0.32 \mathrm{mV}(20 \mathrm{~V} \times 1 / 64,000)$ or $2.50 \mathrm{mV}(20 \mathrm{~V} \times 1 / 8,000)$) DA $\times 1 / 8,000$) when current input is used.
2) Data transfer with the PLC is performed
2. External Dimensions and Part Name

sory: Special function block number label, Power crossover cable
FX2NC--10BPCB1
$\begin{array}{ll}\text { FX2NC-10BPCB1 } & \text { 2) Terminal connector (European type) } \\ \begin{array}{ll}\text { 1) Status indicator LED } & \text { 4) Se } \\ \text { 3), Extension port } & \text { 4) Slide lock for extension block }\end{array}\end{array}$ $\begin{array}{ll}\text { 1) Status indicator LED } & \text { 4) Slide lock for extension block } \\ \text { 3), } \\ \text { 5) DiN rension port } & \text { 6) Power supply connector (} 24 \mathrm{~V} \text { DC) }\end{array}$ 7) Power supply connector (Supply for extension block)

Never wire the \square terminals.

- Status indicator LED

Install the FX2NC-4AD on the right side of the main unit, extension block or special function block of the FX2NC Series PLC

- DIN rail installation

The FX2NC-4AD can be installed on DIN rail DIN46277 (width: 35 mm ($1.38^{\prime \prime}$)). When r
For further details, refer to the Handy Manual packed together with on the PLC main unit.

3. PLC Connection

When connecting the $\mathrm{XX}_{2 N C}-1$
4 AD to the FX 2NC S Series main 4 AD to the FX XNC Series main
unit or extension block unit or extension block
remove the extension por cover from the right side of the main unit or extension block,
keep the slide lock in the main keep the slide lock in the main upward, then align the hook in
the $F X$ XIN-4AD with the mounting hole in the former step of the main unit or Main unit FX2NC-4AD
extension block. Then push the slide lock downward to fix the FX_{2} 2N-4AD. When connecting two unit in the same way. Up to four special function blocks or special function units in total can be CNV-IF. For each connected special function block or special function unit, a unit number
is assigned starting with 0 for the special function block and special function unit is assigned starting with 0 for the special function block and special function unit
nearest to the main unit. nearest to the main unit.
From the main unit, use FROM/TO instructions to read or write data stored in
the FX2NC-4AD. From the main
 - Connect the " $\stackrel{\text { un }}{ }=$ "terminal together with the ground terminal of the PLC main
unit to the ground of the power supply equipped with grounding resistance of
100Ω or less. 100Ω or less.
For crossover wiring to the next block of the FX2NC-4AD, remove the resin

4.2 Input wiring

For terminal arrangement, refer to Chapter 2 of this manual.

*1 When wiring the analog output cable, use a shielded two-core twisted
cable, and separate it from other power cables and cables easily affected cabie, and separate it from other power cables and cables easily affected
by induction.
*2 The SLD terminal is connected to the " $\xlongequal{ \pm}$ "terminal inside the FX2vc-4AD

* 3 For current input, short-circuit the VO + terminal and the IO+ terminal (O Input channel No.).
*4 Do not wire the " - " terminal.
Terminal connector handling
The FX2NC-4AD is equipped with a terminal connector whose form is equivalent to that of the terminal connector type FX NNC PLC.
For the specifications of the suggested screwdriver the dimensions of the For the speciritations of the suggested screwdriver, the dimensions of the
cable terminal, the external dimensions of the bar terminal equipped with insulating sleeve, and applicable wiring, please refer to the FX2NC Hand
Manual.

5. Specifications

5.1 General specifications
(Please refer to the FX2nc are equivalent to those of the PLC main unit
5.2 Power supply specifications

Item	Specifications
Analog circuits	$24 \mathrm{~V} \mathrm{DC} \pm 10 \%$, 130 mA , externally supplied.
Digital circuits	$5 \mathrm{~V} D C, 50 \mathrm{~mA}$, supplied from the PLC main unit using an extension port.
5.3 Performance specifications	
Item	Specifications
Conversion speed	$1 \mathrm{~ms} \times$ Number of used channels
Isolated method	Photocoupler isolated analog input area from PLC. Trans isolated power supply from analog I/O. Channels are not isolated from each other.
Number of occupied I/O points	8 points (including input and output points)
Applicable PLC	FX2NC Series PLC (Up to four units can be connected including special function blocks and special function units connected to FX2nc-CNV-IF.)
Built-in memory	EEPROM

tem	Voltage input	Current inpu
Analog input range	-10 to 10V DC (input resistance: $200 \mathrm{k} \Omega$) Adjustment is enabled with the following conditions: Offset value: -10 to 9 V Gain value: 10 V or less "Gain - Offset": > 1 V (except when $\mathrm{O}=2,5,8$ is set in BFM \#0 that disables all changes to the offset or gain.) Maximum absolute input: $\pm 15 \mathrm{~V}$	-20 to $20 \mathrm{mADC}, 4$ to 20 mADC (input resistance: 250Ω) Adjustment is enabled with the following conditions: Offset value: -20 to 17 mA Gain value: 30 mA or less "Gain - Offset": > 3 mA (except when $\mathrm{O}=2,5,8$ is set in BFM \#0 that disables all changes to the offset or gain.) Maximum absolute input: $\pm 30 \mathrm{~mA}$
Digital output	Effective numeric value (15 bits) + Sign (1 bit)	Effective numeric value (14 bits) + Sign (1 bit)
Resolution	$0.32 \mathrm{mV}(20 \mathrm{~V} \times 1 / 64,000)$ $2.50 \mathrm{mV}(20 \mathrm{~V} \times 1 / 8,000)$	$\begin{aligned} & 1.25 \mu \mathrm{~A}(40 \mathrm{~mA} \times 1 / 32,000) \\ & 5.00 \mu \mathrm{~A}(40 \mathrm{~mA} \times 1 / 8,000) \end{aligned}$
Total accuracy	Ambient temperature: $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ $\pm 0.3 \%(\pm 60 \mathrm{mV})$ against full scale 20 V Ambient temperature: 0 to $+55^{\circ} \mathrm{C}$ $\pm 0.5 \%(\pm 100 \mathrm{mV})$ against full scale 20 V	Ambient temperature: $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ $\pm 0.5 \%(\pm 200 \mu \mathrm{~A})$ against full scale 40 mA 4 to 20 mA input is same (± 200 $\mu \mathrm{A})$ Ambient temperature: 0 to $+55^{\circ} \mathrm{C}$ $\pm 1 \%(\pm 400 \mu \mathrm{~A})$ against full scale 40 mA 4 to 20 mA input is same $(\pm 400$ $\mu \mathrm{A})$

6. Buffer Memory (BFM)

Data transfer between the $\mathrm{FX} \mathrm{X}_{2 \mathrm{NC}}-4 \mathrm{AD}$ and the PLC main unit is performed
via buffer memories (hereafter referred to as "BFM") of the $\mathrm{FX} 2 \mathrm{NC}-4 \mathrm{AD}$. Each BFM consists of 1 word, 16 bits. BFM No. 0 to 1799 have assigned O/FRROM instructions supplied by hese BFMs should be performed using When the power is switched ON from OFF, the inititial value is written to each o the BFMs every time the power of the PLC is turned ON.
(The contents stored in $\operatorname{FBM} \# \#, \# 19, \# 22, \# 41$ to \#44 and \#51 to \#54 are
held in the built-in EEPROM, and kept against power failure.) 6.1 Buffer Memories (BFM) lists

BFM	Description		Initial value
\#198	Data history sampling time [Effective only for channels whose number of averaging times (BFM \#2 to \#5) is 1 and digital filter setting (BFM \#6 to \#9) is 0] Setting range: 0 to $30,000 \mathrm{~ms}$		Ko
\#199	Resets or stops data history. [Effective only for channels whose number of averaging times (BFM \#2 to \#5) is 1 and digital filter setting (BFM \#6 to \#9) is 0]		Ko
\#200	CH1 data history (1st value)	Data history sampling is effective only for channels whose times (BFM \#2 to \#5) is 1 and digital filter setting (BFM \#6 to \#9)is 0 . is 0 .	K0
:	:		:
\#1799	$\underset{\text { value }}{\mathrm{CH} 4 \text { data history (400th }}$		ко

6.2 Details of buffer memories

Speciity the input mode of CH 1 to CH 4 by writing a numeric $\mathrm{BFM} \# 0$
value to $\mathrm{BFM} \# \mathrm{\#}$. value to $\mathrm{BFM} \# 0$.
The input mode specification declares, each BFM expressed as a 4-digit hexadecimal code, and each channel No. is
assigned to each digit. Specify a numeric value 0 to F in each digit for each channel.
$\mathrm{O}=0$: Voltage input mode (-10 to $10 \mathrm{~V} \rightarrow-32000$ to 32000),
$\mathrm{O}=1$: Voltage input mode (-10 to $10 \mathrm{~V} \rightarrow-4000$ to 4000), resolution 2.50 mV
O=2: Voltage input mode (-10 to $10 \mathrm{~V} \rightarrow-10000$ to 10000), resolution 1 mV
O
$\mathrm{O}=3$.
$\mathrm{O}=3$: Current input mode (4 to $20 \mathrm{~mA} \rightarrow 0$ to 16000), resolution $1.25 \mu \mathrm{~A}$
$\mathrm{O}=4$: Current input mode (to $20 \mathrm{~mA} \rightarrow 0$ to 4000), resolution $5.00 \mu \mathrm{~A}$
$\mathrm{O}=4$: Current input mode (4 to $20 \mathrm{~mA} \rightarrow 0$ to 4000), resolution $5.00 \mu \mathrm{~A}$
$\mathrm{O}=5 \mathrm{C}$ Curent input mode (4 mA to $20 \mathrm{~mA} \rightarrow 400 \mathrm{O}$.o 20000$)$, resolution $1.25 \mu \mathrm{~A}$
$\mathrm{O}=6$ Curent input mode (-20 to $20 \mathrm{~mA} \rightarrow-16000$ to 1600), resolution $1.25 \mu \mathrm{~A}$
O=7: Current input mode (-20 to to $20 \mathrm{~mA} \rightarrow-16000$ to 16000$)$, resolution $1.25 \mu \mathrm{~mA} \rightarrow-4000$ to 40000$)$, resolution $5.00 \mathrm{\mu A}$
$\mathrm{O}=8$. Current input mode $(-20$ to $20 \mathrm{~mA} \rightarrow-20000$ to 2000), resolution $125 \mu \mathrm{~A}$ $\mathrm{O}=8$: Current input mode (-20 to $20 \mathrm{~mA} \rightarrow-20000$ to 20000), resolution $1.25 \mu \mathrm{~A}$ $\mathrm{O}=\mathrm{F}$: Corresponding CH is not used.

- The input characteristics are changed automatically according to the setting of
BFM \#0. (The input characteristics can be changed to independent values except when $\mathrm{O}=2,5,8$ is set in $\mathrm{BFM} \# 0$ that disables all changes to the offset or excep.
gain.)
set valu)
set value).
Time interval of 5 seconds or more after changing the input mode until the
- Setting "HFFFF" to allocate all channels as unusable is not allowed.

BFM \#2 to BFM \#5: Number of averaging times
(Make sure to set the number of averaging times to "1" when using the digital
filer.)
The allowable set range of the number of averaging times is 1 to 4,095 .
The aliowable set range of the number of averaging times is 1 to 4,095 .
If the number of averaging times is set to "11",the immediate edata (current value)
is stored in FF) $\# 10$ to $\# 13$. Otherwise is stored in BFM $\# 10$ to $\# 13$. Otherwise, BFM $\# 10$ to BFM \#13 will be averaged
depending on the value set in BFM $\#$ to $B F M \# 5$ depending on the value set in BFM \#2 to BFM \#5. "O"
If the number of averaging times is set to " 0 " or less, "0, is written. If the number of averaging times is set to "4,096" or more, "4096" is written. In either case of averaging times is set to "4,096" or more, " 4966 is written. In either case,
number of averaging times setting error (BFM \#29 b10) occurs. The initial se value is "1 1 ".

Average data updat

- When the number of averaging times (BFM \#2 to BFM \#5) is set to "400" or
less, the average (BFM $\# 10$ to $\operatorname{BFM} \# 13$) is updated every tie the conversion processing is performed.
The update time is as follows:
Average data update time $=(A / D$ conversion time) \times Number of channels When the number of averaging times (BFM \#2 to BFM \#5) is set to "401" or
more, the average (BFM \#10 to BFM \#13) is updated every time the ADD conversion is performed by as many as the set number of averaging times.
The update time is as follows:
Average data update time $=(A / D$ conversion time) \times Number of channels \times
Number of averaging times
In either case above, until the number of A / D conversion times reaches the se number of averaging times for the first time, the average at each time point is
stored in BFM \#10 to BFM \#1 3.

FFM \#6 to BFM \#9: Digital filter setting

(Effective only when the number of averaging times is set to "1
(Etiective only when the number of averaging times is set to "1"
Setting BFM \#6 to BFM \#\# to "1" invoks, the digital fiter which can be provided
for each channel. If the fluctuation of the analog input value is less than the set for each channel. If the fluctuation of the analog input value is less than the se digital output value. If the analog input value exceeds the set value, the proceeding digital conversion value will follow and repelicate there values. The
data is updated every $\mathbf{~ " m s ~} \times$ Number of data is updated every " $5 \mathrm{~ms} \times$ Number of channels", and stabilized by the last 20
data.
 BFM \#10 to BFM \#13: Channel data
The A/D conversion data for each channel is written to BFM \#10 to \#13. BFM \#19: Disables setting change
BFM \#19 enables or disables the setting change of the I/O characteristics
(BFM $\# 0, \# 41$ to \#44, \#51 to \#54), the convenient functions (BFM \#\#2).
K1: Enables change (f
K2: Disables change.

BFM \#20: Initializes functions

BFM \#20 initializes all data stored in BFM \#0 to BFM \#1799, and sets the FX2NC-4AD to factory default.
By initialization, the input characteristics are reset to the values set a factory default (voltage input, offset value K 0 , gain value K 5000).
Ko: Normal
K1: Executes initialization. (Writes K1, subsequently returns to K0
K 1 : Executes initialization. (Writes K1
when initialization is completed.)
BFM \#21: Writes I/O characteristics
Each channel No. is assigned to the lower 4 bits of BFM \#2
When a bit is set to ON, the offset data (BFM \#41 to BFM \#44) and the gain data (BFM \#ory (EEPROM).
built-in memory Give the write command to two or more channels at a time. (When entering "HF", all channels are written to.).
. \#21 subsequently returns to KO .

The functions described below are assigned to b0 to b3 of BFM \#22. Whe a bit is set to ON , the assigned function becomes valid.
When a bit is set to OFF, the assigned function becomes invalid.
bo: Data addition function
The data (BFM \#10 to BFM \#13), minimum/maximum value (BFM \#10 to BFM \#104, BFM \#111 to BFM \#114) and data history (BFM \#200 to
BFM \#1799) of each channel is the measured value added by the BFM \#1799) of each channel is the
addition data (BFM \#61 to BFM \#64).
When using this function, enter the value added by the addition data
(BFM \#61 to BFM \#64) to the lower limit value error set value (BFA
 BFM \#84).
The addition data (BFM \#61 to BFM \#64) is not added to the scale ove b1: Upper/lower limit value detection function
When the A/D conversion data of each channel is outside the range of the lower limit value error set value (BFM \#71 to BFM \#74) to the uppe
limit value error set value (BFM \#81 to BFM \#84), the result is written to imit value error set value (BFM \#81 to BFM \#84), the result is written to b2: Sudden change detection furction sta
When the data (BFM \#10 to BFM \#13) of each channel is updated,
the difference between the previous value and the new value is the difference between the previous value and the new value is large
than the sudden change detection set value (BFM \#91 to BFM \#94), the result is written to the sudden change detection status (BFM \#27). b3: Minimum/maximum value hold function
is written to BFM \#101 to BFM \#104, and the maximu each channe is written to BFM \#101 to BFM \#104, and the maximum value is written BFM \#26: Upper/lower limit error status
The upper /lower limit value detection function (BFM\#22 b1), write detected errors to the corresponding bits in BFM\#26 (see table). Upper and
lower limit error status for the four channels is located in bit-pairs in the first 8bits of BFM\#26.
When the data (BF
When the data (BFM \#10 to BFM \#13) of any channel is outside the range
from the lower limit error value (BFM \#71 to BFM \#74) to the upper lim from the lower limit error value (BFM \#71 to BFM \#74) to the upper limit
error value (BFM \#81 to BFM \#84), the corresponding bit turns ON. When a bit turns ON, it remains ON until it is reset by BFM \#99 or the
power is turned OFF.

Even while an upper/lower limit value error is detected, the data (BFM \#10 to BFM \#13) of each channel continues to be updated. Bit assignment of BFM \#26		
Bit No.	Channel No.	Description
b0	CH1	Lower limit error
b1		Upper limit error
b2	CH2	Lower limit error
b3		Upper limit error
b4	CH3	Lower limit error
b5		Upper limit error
b6	CH4	Lower limit error
b7		Upper limit error

BFM \#27: A/D data sudden change detection status
The sudden change detection function (BFM\#22 b2) writes detected errors
to the corresponding bits in $B F M \# 27$. The sudden change detection status or negative or positive changes is located in the first 8 bits of $B F M \# 27$ in
bit-pairs.
W-hen the data (BFM \#10 to BFM \#13) of each channel is updated, if the
difference between the previous value and the new value is larger than the sudden change detection set value (BFM \#91 to BFM \#94), the corresponding bit in BFM \#27 turns ON.
this time, when the new value is larger than the previous value, a bit for
the + direction turns ON. when the new value is smaller than the previous value, a bit for the When a bit turns ON, it remains ON until it is reset by BFM \#99 or the Even while a sudden change error is detected, the data (BFM \#10 to BFM 13) of each channel continues to be updated.

Bit No.	Channel No .	Description
b0		Sudden change error in - direction
b1		Sudden change error in + direction
b2	СН2	Sudden change error in - direction
b3		Sudden change error in + direction
${ }^{64}$		Sudden change error in - direction
b5	Снз	Sudden change error in + direction
b6		Sudden change error in - direction
b7	CH4	Sudden change error in + direction

BFM \#28: Scale over status
he result of the analog input value for each individual channel that has xceeded the A / D conversion range will be written to $B F M \# 28$.
Range in which A / D conversion is available:

Voltage input mode		Current input mode
D.2V to 10.2 V		-20.4mA to 20
A bit will remain ON unless it is reset from switching the Power OFF or overwriting the ON bit with an OFF bit via a TO instruction. Even while a scale over error is detected, the data (BFM \#10 to BFM \#13) of each channel continues to be updated. Bit assignment of BFM \#28		
Bit No.	Channel No .	Description
b0		Scale over: Less than lower limit
b1		Scale over: More than upper lim
b2		Scale over: Less than lower limit
b3		Scale over: More than upper limit
b4		Scale over: Less than lower limit
b5		Scale over: More than upper limit
b6		Scale over: Less than lower limit
b7		Scale over: More than upper limit

BFM \#29: Error status
Eror information is assigned to each bit of BFM \#29.
Bit assignment of BFM $\# 29$

Bit	Assignment	Description
No.	Error detected	b0 is ON while either b 2 to b 4 is ON.
b0	-	
b1	-	-

$\begin{array}{\|l\|l\|l\|l\|} \hline \text { Bit } \end{array}$	Assignment	Description
b2	Power error	24 V DC power is not correctly supplied. Check the wiring and supply voltage.
b3	Hardware error	FX2NC-4AD may have malfunctioned. Contact the nearest Mitsubishi Electric System Service center.
b4	A/D conversion value error	A/D conversion value is abnormal. Using the scale over data (BFM \#28), check the channel in which the error has occurred
b5	-	-
b6	BFM read/write disabled	This bit will be ON during the input characteristics change processing. While this bit is $O N$, correct A / D data will not read from or written to BFMs.
b7	-	-
b8	Set value error detected	This bit will be ON while either b9 to b15 is ON.
b9	Input mode setting error	Input mode (BFM \#0) is incorrectly set. Set it within the range from 0 to 8 .
b10	Number of averaging times setting error	Number of averaging times is incorrectly set. Set it within the range from 1 to 4,095 .
b11	Digital filter setting error	The digital filter setting is incorrect. Reset within the range of 0 to 1,600 .
b12	Sudden change detection set value error	Sudden change detection set value is incorrect. Set a correct value.
b13	Upper/lower limit set value error	Upper/lower limit set value is incorrect. Set a correct value.
b14	-	-
b15	Addition data setting error	Addition data is incorrectly set. Set it within range from -16,000 to 16,000 .

BFM \#30: Model code
 BFM \#30 stores a fixed value of "K2070

ng
BFM \#32 stores the continuous operating time for the FX2NC-4AD.
Measurement starts when the power is turned ON, and the measured value is reset when the power is turned OFF.
The measurement range is from 0 to 64,800 (s). After that, 64,800 is kept. BFM \#41 to BFM \#44: Offset data
Offset data:Analog input value when the digital value is "0"
Gain data :Analog input value when the

Standard digitital valueue varies depending on the salueting of the input mode.) (A number in the input mode column indicates a value set in BFM \#0.) \begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Input mode (BFM \#0) \& 0 \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8

\hline Standard offset value \& 0 \& 0 \& - \& 0 \& 0 \& - \& 0 \& 0 \& -

\hline Standard

\hline

\hline Standard offset value \& 0 \& 0 \& - \& 0 \& 0 \& - \& 0 \& 0 \& -

\hline Standard gain value \& 16000 \& 2000 \& - \& 16000 \& 4000 \& - \& 16000 \& 4000 \& -

\hline
\end{tabular} Set the offset and gain data for each channel.

- Write the set value in units of " $m V$ " for voltage input or " μ " for current input. Do not change the input characteristics when $O=2,5$,
(Even if a numerical value is written, it is ignored.)
(Even if a numerical value is writen, it is ignored.) nitial offset/gain value (Unit: $m V$ for voltage input, $\mu \mathrm{A}$ for current input)

Input mode (BFM \#0)	0	1	2	3	4	5	6	7		8
Initial offset value	0				4000			0		
Initial gai		5000					20000			

Setting range

	Voltage input	Current input
Offset data	-1000 to 9000 (mV)	-20000 to 17000 ($\mu \mathrm{A}$)
Gain data	Gain value - Offset value $=1,000$ to $10,000(\mathrm{mV})$	Gain value - Offset value $=3,000$ to $30,000(\mu \mathrm{~A})$

The actual effective input range is "-10 to 10 V " or "-20 to 20 mA ".
BFM \#61 to BFM \#64: Addition data
When using the data addition function (BFM \#22 bo), data (BFM \#10 to BFM
$\# 13)$, minimum/maximum value (BFM \#101 to BFM \#104 BFM \#111 t \#13), minimum/maximum value (BFM \#101 to BFM \#104, BFM \#111 to BFM
$\# 114$) and data history (BFM \#200 to BFM \#1799) of each channel becomes the measured value added by the addition data (BFM \#61 to BFM \#64). When using the data addition function, enter the value added by the addition
data (BFM \#61 to BFM \#64) to the lower limit value error set value (BFM \#71 to data (BFM \#61 to BFM \#64) to the lower limit value error set value (BFM \#71
BFM \#74) and the upper limit value error set value (BFM \#81 to BFM \#84). BFen \#7) and the upper limit val
Setting range: $-16,000$ to 16,000

BFM \#71 to BFM \#74: Lower limit, error set valu

When using the upper/lower limit value detection function (BFM \#22 b1), write
the lower limit value of each channel to BFM \#71 to BFM \#74 and the upper limit value of each channel to BFM $\# 81$ to BFM \#84. When using the data addition function (BFM

he addition da Setting range

The setting range will vary depending on the setting of the input mode (BFM \#0) The table below shows the setting range for each input mode. Enter the se

Input mode (BFM \#0)	Setting range	Initial value	
		Lower limit	$\left\lvert\, \begin{array}{\|l\|l\|} \hline \text { Upper } \\ \text { limit } \end{array}\right.$
O: Voltage input mode $(-10$ to $10 \mathrm{~V} \rightarrow-32000$ to 32000)	-32768 to 32767	-32768	32
1: Voltage input mode(-10 to $10 \mathrm{~V} \rightarrow-4000$ to 4000)	-4096 to 4095	-4096	409
2: Voltage input mode $(-10$ to $10 \mathrm{~V} \rightarrow-10000$ to 10000) 3:	-10200 to 10200	-10200	10200
3: Current input mode (4 to $20 \mathrm{~mA} \rightarrow 0$ to 16000)	-1 to 16383	-1	163
$\begin{aligned} & \text { 4: Current input mode } \\ & \text { (4 to } 20 \mathrm{~mA} \rightarrow 0 \text { to } 4000 \text {) } \end{aligned}$	-1 to 4095	-1	409
5: Current input mode (4 to $20 \mathrm{~mA} \rightarrow 4000$ to 20000)	3999 to 20400	3999	2040
6: Current input mode $\begin{aligned} & \text { (}-20 \text { to } 20 \mathrm{~mA} \rightarrow-16000 \text { to 16000) }\end{aligned}$	-16384 to 16383	-16384	1638
7: Current input mode $(-20$ to $20 \mathrm{~mA} \rightarrow-4000$ to 4000$)$	-4096 to 4095	-4096	409
8: Current input mode (-20 to $20 \mathrm{~mA} \rightarrow-2000$ to 20000)	-20400 to 20400	-20400	20400

BFM \#91 to BFM \#94: Sudden change detection set value
When using the sudden change detection function (BFM \#22 b2), enter the set value to judge the sudden change.
When the data (BFM \#10 to BFM \#13) of each channel is updated, if the difference between the previous value and the new value is larger than the
sudden change detection set value (BFM \#91 to BFM \#94), the result is written to the sudden change detection status (BFM \#27).
The setting range will vary depending on the setting of the input mode (BFM \#0). The table below shows the setting range for each input mode. Write the set value in a digital value

Input mode (BFM \#0)	Setting range	Initial value
0: Voltage input mode $(-10$ to $10 \mathrm{~V} \rightarrow-32000$ to 32000)	1 to 32767	3200
1: Voltage input mode (-10 to $10 \mathrm{~V} \rightarrow-4000$ to 4000)	1 to 4095	400
2: Voltage input mode (-10 to $10 \mathrm{~V} \rightarrow-10000$ to 10000)	1 to 10000	1000
$\begin{aligned} & \text { 3: Current input mode } \\ & \text { (4 to } 20 \mathrm{~mA} \rightarrow 0 \text { to 16000) } \end{aligned}$	1 to 8191	800
$\begin{aligned} & \text { 4: Current input mode } \\ & \text { (4 to } 20 \mathrm{~mA} \rightarrow 0 \text { to } 4000 \text {) } \end{aligned}$	1 to 2047	200
5: Current input mode (4 to $20 \mathrm{~mA} \rightarrow 4000$ to 20000)	1 to 8191	800
6: Current input mode (-20 to $20 \mathrm{~mA} \rightarrow-16000$ to 16000)	1 to 16383	1600
$\begin{array}{\|l\|l} \hline 7: \text { Current input mode } \\ (-20 \text { to } 20 \mathrm{~mA} \rightarrow-4000 \text { to } 4000) \end{array}$	1 to 4095	400
8: Current input mode $(-20$ to $20 \mathrm{~mA} \rightarrow-20000$ to 20000)	1 to 20000	2000

BFM \#99: Clears upper/lower limit value error and sudden change
The commands to clear the lower and upper limit value error and the sudden
change detection error are assigned to the lower three bits of BFM \#99.
The flag of the corresponding error status (BFM \#26, BFM \#27) is reset for al The flag of the corresponding error status (BFM \#26, BFM \#27) is reset for all
channels simultaneously when a bit is setto ON.
After the reset is finished, each bit of BFM \#99 returns automatically to the OFF
state. The setting of two or more clear commands to ON at the same time is possible.
Bit assignment of BFM \#99

Bit No.	Description
b0	Clears lower limit error.
b1	Clears upper limit error.
b2	Clears sudden change detection error.
b3 to b15	Unusable

BFM \#101 to BFM \#104: Minimum value BFM \#111 to BFM \#114: Maximum value

When using the minimum/maximum value hold function (BFM \#22 b3), the
minimum value of the data (BFM \#10 to BFM \#13) minimum value of the data (BFM \#10 to BFM \#13) of each channel is
written to BFM \#101 to BFM \#104, and the maximum value is written to BFM \#111 to BFM \#114.
When using the data addition function (BFM \#22 bo), the minimum

BFM \#64). Initial value
 Initial value

Minimum/maximum value hold function is not used:KO
gital value when th

BFM \#109: Minimum value reset BFM \#119: Maximum value reset

When using the minimum/maximum value hold function (BFM \#22 b3 FFM $\# 109$ clears the minimum value stored in BFM \#101 to BFM \# $\# 10$
and BFM and
\#114.
The
The channel No. that will be reset is assigned to each bit of BFM \#109 and , When a bit is set ON , minimum/maximum value of the assigned channel is cleared. (Setting two or more bits ON simultaneously is possible.).
Bit assignment

BFM \#109	Bit No.	b15 to b4	b3	b2	b1	b0
	Channel No. (BFM No.)	Unusable	$\begin{gathered} \mathrm{CH} 4 \\ (\# 104) \end{gathered}$	$\begin{gathered} \hline \mathrm{CH} 3 \\ (\# 103) \end{gathered}$	$\begin{aligned} & \mathrm{CH} 2 \\ & (\# 102) \end{aligned}$	$\begin{gathered} \hline \text { CH1 } \\ (\# 101) \end{gathered}$
BFM \#119	Bit No.	b15 to b4	b3	b2	b1	b0
	Channel No. (BFM No.)	Unusable	$\begin{array}{\|c} \hline \mathrm{CH} 4 \\ (\# 114) \end{array}$	$\begin{gathered} \hline \text { CH3 } \\ (\# 113) \end{gathered}$	$\begin{gathered} \text { CH2 } \\ (\# 112) \end{gathered}$	$\begin{gathered} \hline \mathrm{CH} 1 \\ (\# 111) \end{gathered}$

BFM \#198: Data history samping

Set the data history sampling time
Setting range: 0 to $30,000 \mathrm{~ms}$
Setting range: 0
Sampling cycle
Samping cycle
When the set value is "0" $: 1 \mathrm{~ms} \times$ Number of effective channels
When the set value is "1" or more:Set value (ms) \times Number of effective When the set value is "1" or more: Set value (ms) \times Number of effective
channels The data history reset function is assigned to the lower 4 bits of BFM \#199. Data history reset function
The channel No. to be reset is assigned to each of the lower 4 bits of BFM When a bit is set to ON, the data history (all contents from the 1st value to more its to N s the assigned channel is cleared. (the setting of two o more bits to oN simultaneously is possible.) When the clear operation is completed, each bit returns automatically to When the clea
the OFF state.
Assignment of lower 4 bits

Bit No.	b7 to b4	b3	b2	b1	b0
Channel No.	Unusable	CH4	CH3	CH2	CH1

This function will temporarily stop the data history for the individua
channels. The channel No. to be temporarily stopped is assigned to each channels. The channel No. to be temporarily stopped is assigned to each
of the upper 4 bits of $\operatorname{BFM} \# 199$. When a bit tis set to ON, sampling of the data history of the assigned channel is temporarily stopped. (Setting two o more bits to ON at a time.). channel restarts.
Assignment of upper 4 bits

Bit No.	b15 to b12	b11	b10	b99	b8
Cannel No.	Unusable	CH4	CH3	CH2	CH1

SFM \#200 to BFM \#1799: Data history

The A/D conversion value of each channel is sampled, and written to the channel No. and the BFM No. Data is stored in ascending order of the BFM No.
Up to 400 data history items are written for each channel. When the umber of history item
e smallest BFM No. The data history function is valid only for channels whose number of veraging times (BFM"
Assignment of channel No. and BFM No.

Channel No.	BFM No.				
	1st value	2nd value	3rd value	$\cdots \cdots$	400th value
CH1	$\# 200$	$\# 201$	$\# 202$	$\cdots \cdots$	\#599
CH2	$\# 600$	$\# 601$	$\# 602$	$\cdots \cdots$	$\# 999$
CH3	$\# 1000$	$\# 1001$	$\# 1002$	$\cdots \cdots$	$\# 1399$
CH4	$\# 1400$	$\# 1401$	$\# 1402$	$\cdots \cdots$	$\# 1799$

If a considerable amount of data history is read from the PLC main un
using a FROM instruction, a watch dog timer error occurs in the PLC main unit.
In such a case, divide the required data history using multiple FROM
instructions, and insert the WDT instruction (watch dog timer refresh instructions, and insert the WDT instruction (watch dog timer refresh

. Adjustment of I/O Characteristics

For factory default, the $\mathrm{FX}_{2 \mathrm{NC}}-4 \mathrm{AD}$ has standard I/O characteristics in the voltage and current input mod haracteristics for each channel. (Do not change ust the standard I/O hen $2,5,8$ is set in BEM \#0.)

7.1 Standard I/O characteristics

The input mode of the standard I/O characteristics is abbreviated as shown below:
$\frac{0}{(1)} \frac{\text { Voltage input, }}{\frac{-10}{(2)}} \frac{\text { to } 10 \mathrm{~V},-\frac{-32,000}{(9)}}{(9)}$

2. Voltage input, -10 to 10 V ,
$-10,000$ to 10,000

.Curent input, 4 to 20 mA ,

8. Current input, -20 to 20 mA

7.2 Adjustment of I/O characteristics

Adjust the $/ O$ characteristics using the buffer memories in the FX2NC-4AD. Firstly, enter the input mode to BFM \#0, then enter the offset data to BFM \#41 BFM \#44, subsequently enter the gain data to BFM \#51 to BFM \#54. Update the offset data and the gain data for each channel using BFM \#21,

$$
\begin{aligned}
& \text { Update the offset data and the gain data for each channel } \\
& \text { Example program (Adjustment of } \mathrm{CH} 1, \mathrm{CH} 2 \text { and } \mathrm{CH} 4 \text {) }
\end{aligned}
$$

4. Current input, 4 to 20 mA ,

0 to 40

6. Current input, -20 to 20 mA ,
-16000 to 16000

7. Current input, -20 to 20 mA ,

* It takes approximately 5 seconds to change the input mode (BFM \#0) (to
change each set value). Assure that atime interval of 5 seconds or more is held after a change of the Assure that a time interval of 5 seconds or more is held after a change of the
input mode until execution of write of each setting (TO instruction). The I/O characteristics can be written (BFM \#21) to either channel, or two or
more channels simultaneously. more channels simultaneously.

8. Example program

FX2NC-4AD and connecting to digital data in the PLC. Condition
System configuration:
The FX2NC-4AD is connected as a special function block nearest to the FX2NC Series PLC main unit (unit No. 0).
Input mode:
CH1 and CH2: Mode 0 (voltage input, -10 to $10 \mathrm{~V} \rightarrow-32000$ to 32000)
CH 3 and CH 4 : CH3 and CH4: Mode 3 (current input, 4 to $20 \mathrm{~mA} \rightarrow 0$ to 16000)
Number of averaging times: 1 (initial value) in each channel Number of averaging times: 1 (initial value) in each channel I/O characteristics:
Convenient function: Upper/lower limit value detection function is used
Data history function:
Data history function:
Used while sampling time is set to oms (initial value).
Used while sampling time is set to 0 ms (initial value).
CH1 to CH4: Sampling time $=1 \mathrm{~ms} \times 4$ (Number of effective channels) $=4 \mathrm{~ms}$ //O assignment:
X001 :Clears the upper/lower limit value error.
Yo00 to Y017: Output the upper/lower limit value error status of each Y020 to Y037: Output scale over status of each channel

Example program

1) The input mode setting will be kept by the EEPROM, therefore,

* 1 When multiple data history items are read, the scan time of the PLC becomes longer.
In the FX 2nc
Se error indicator lamp lights and the PLC stops.
When reading many data history items dive read using two or more FROM instructions, then insert the WDT (wate dog timer refresh) instruction between FROM instructions.

※MITSUBISHI ELECTRIC CORPORATION

MITSUBISHI
FX2nc-4AD Analog input block

$\begin{aligned} & \text { Thial } \\ & \text { Thof } \\ & \text { bof } \end{aligned}$

User's Manual

F- $2 n \mathrm{nc}$ | MODEL | FX2NC-4AD |
| :--- | :--- |
| MANUAL Number | JY997DO7801A |
| Date | June 2003 | this manual should be used by trained and competent personnel. Th finition of such a person or persons is as follows: Any engineer using the product associated with this manual, should be of a

competent nature, trained and qualified to the local and national standards These engineers should be fully aware of all aspects of safiety with regards
to automated equipment. b) Any commissioning or service engineer must be of a co
trained and qualified to the local and national standards.
c) All operators of the completeded equipment stanouldards. be trained to use this safety practices.
Note:The term completed equipment' refers to a third party constructed
device which contains or uses the product associated with this manual.
 standards. Compliance to EMC standards of
should be checked by the user/ manutacturer.

Electromagnetic Compatibility Standards	Remark
EMC)	

1. Introduction

The FX2NC-4AD analog input block (hereafter referred to as "FX2NC-4AD")
converts 4 points of analog input values (voltage and current inputs) into

1) A combination of voltage and current analog inputs sfecectable via the PLC

The voltage input range can be selected within -10 to 10 V , alternatively. the
Current inp
The in input
3) The resolution is $0.32 \mathrm{mV}(20 \mathrm{~V} \times 1 / 64,000$) or $2.50 \mathrm{mV}(20 \mathrm{~V} \times 1 / 8,000)$
when voltage input is used, and $1.2 \mathrm{HA} 4(40 \mathrm{~mA} \times 1 / 22,000)$ or 5.00 HA (40

4. Wiring

Poner cososerer

main unt		
${ }_{\text {Pounersuply }}^{\substack{\text { comecor }}}$	Poters	
${ }^{24-244}$		

 extension block.
Then push the slide lock downward to fix the FX XNC-4AD. When connecting two or more FX2NC-4AD units, connect an FX2NC-4AD unit to another FX2NC-4AD
unit in the same way. unit in the same way.
Up to four special unction blocks or special function units in total can be
connected to the FXZNC Series PLC including those connected to the FX2NC-CNV-IF.
For each
is assigned For each connected special function block or special function unit, a unit tuumber
is assigned starting with of or the special function block and special function unit
nearest to the main unit nearest to the main
From the main unit,
the FX2NC-4AD.
 Never wire the $\square \bullet$ terminals.
Status indicator LED

DIN rail installation

 hook

For furthe main unit.

3. PLC Connection

.

When wiring the analog output cable, use a shielded two-core twisted
cabo, and separate it rom other power cables and cables easily affected
by induction by induction.
2 The SLD terminal is connected to the " $\stackrel{ \pm}{ }$ "terminal inside the FXXNC-AAD.

* 3 For current input, short-circuit the VO + terminal and the $1 \mathrm{O}+$ terminal (O) For current input, short-circuit the VO+ terminal and the $10+$ terminal (O :
Input channel No.). *4 Do not wire the " " "terminal.
The FXXNC-4AD is equipped with a terminal connector whose form is
equivalent to that of the terminal equivalent to that of the terminal connector type $\operatorname{FX2NCN}$ PLC.
For the specifications of the suggested screwdriver, the dimensions of the cable terminali, the external limensions screwdriver, the dimensions of the ber terminal equipped with
insulating sleeve, and applicable wiring please refer to the FXX2NC Handy insulating sleeve, and applicable wiring, please refer to the FX2NC Handy
Manual.

5. Specifications

5.1 General specifications

The general specifications are equivalent to those of the PLC main unit.

| Item | Power supply specifications |
| :--- | :--- | :--- |
| Specifications | |

Item	Specifications
Analog circuits	$24 \mathrm{~V} C \pm \pm 10 \%, 130 \mathrm{~mA}$, externally supplied.
Digital circuits	5 V DC, 50 mA , supplied from the PLC main unit using an extension port.
5.3 Performance specifications	
Item	Specifications
Conversion speed	$1 \mathrm{~ms} \times$ Number of used channels
Isolated method	Photocoupler isolated analog input area from PLC Trans isolated power supply from analog I/O. Channels are not isolated from each other.
Number of occupied I/O points	8 points (including input and output points)
Applicable PLC	FX2NC Series PLC (Up to four units can be connected including special function blocks and special function units connected to FX2NC-CNV-IF.)
Built-in memory	EEPROM

5.4 Voltage/current input specifications

Item	Voltage input	Current input
Analog input range	-10 to 10V DC (input resistance: $200 \mathrm{k} \Omega$) Adjustment is enabled with the following conditions: Gain value: 10 V or less "Gain - Offset": >1 V except when $=2,5,8$ set in BFM \#0 that disables all changes to the offset or gain.) Maximum absolute input: $\pm 15 \mathrm{~V}$	-20 to $20 \mathrm{mADC}, 4$ to 20 mA DC (input resistance: 250Ω) Adjustment is enabled with the following conditions: Gain value: 30 mA or less "Gain - Offset": > 3 mA (except when $O=2,5,8$ is set in BFM \#0 that disables all changes to the offset or gain.) Maximum absole input: $\pm 30 \mathrm{~mA}$
Digital of	Effective numeric value (15 bits) + Sign (1 bit)	Effective numeric value (14 bits) + Sign (1 bit)
Res	$\begin{aligned} & 0.32 \mathrm{mV}(20 \mathrm{~V} \times 1 / 64,000) \\ & 2.50 \mathrm{mV}(20 \mathrm{~V} \times 1 / 8,000) \end{aligned}$	$1.25 \mu \mathrm{~A}(40 \mathrm{~mA} \times 1 / 32,000)$ $5.00 \mu \mathrm{~A}(40 \mathrm{~mA} \times 1 / 8,000)$
$\left\lvert\, \begin{array}{\|l\|l\|} \text { Total } \\ \text { accuracy } \end{array}\right.$	Ambient temperature: $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ $\pm 0.3 \%(\pm 60 \mathrm{mV})$ against full scale 20 V Ambient temperature: 0 to $+55^{\circ} \mathrm{C}$ $\pm 0.5 \%(\pm 100 \mathrm{mV})$ against full scale 20 V	Ambient temperature: $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ $\pm 0.5 \%(\pm 200 \mu \mathrm{~A})$ against full scale 40 mA 4 to 20 mA input is same $(\pm 200$ (A) Ambient temperature: 0 to $+55^{\circ} \mathrm{C}$ $\pm 1 \%(\pm 400 \mu \mathrm{~A})$ against full scale 40 mA 4 to 20 mA input is same $(\pm 400$ $\mu \mathrm{A})$

6. Buffer Memory (BFM)		
Data transfer between the FX2NC-4AD and the PLC main unit is performe via buffer memories (hereafter referred to as "BFM") of the FX2NC-4AD. Each BFM consists of 1 word, 16 bits. BFM No. 0 to 1799 have assigned functionality, communication with these BFMs should be performed using TO/FROM instructions supplied by the PLC main unit. When the power is switched ON from OFF, the initial value is written to each BFM. Create a program for the PLC so that the desired contents are writte to the BFMs every time the power of the PLC is turned ON. (The contents stored in BFM \#0, \#19, \#22, \#41 to \#44 and \#51 to \#54 ar held in the built-in EEPROM, and kept against power failure.)		
6.1 Buffer Memories (BFM) lists		
$\begin{aligned} & \text { BFMM} \\ & \text { No. } \end{aligned}$	Description	Initial
\#0	Specifies input mode of $\mathrm{CH1}$ to CH 4.	H00
\#1	Reserved	
\#2	Number of averaging times for CH 1 Setting range: 1 to 4,095 times	K1
\#3	Number of averaging times for CH 2 Setting range: 1 to 4,095 times	K1
\#4	Number of averaging times for CH3 Setting range: 1 to 4,095 times	K1
\#5	Number of averaging times for CH 4 Setting range: 1 to 4,095 times	K1
\#6	CH1: Digital filter setting Set range: 0 to 1,600	K0
\#7	CH2: Digital filter setting Set range: 0 to 1,600	к0
\#8	CH3: Digital filter setting Set range: 0 to 1,600	ко
\#9	CH4: Digital filter setting Set range: 0 to 1,600	ко
\#10	CH1 data (immediate data or average data)	-
\#11	CH2 data (immediate data or average data)	-
\#12	CH3 data (immediate data or average data)	-
\#13	CH4 data (immediate data or average data)	-
:	Reserved	-
\#19	Disables setting change of $1 / O$ characteristics (BFM \#0, BFM \#1, BFM \#21) and convenient functions (BFM \#22). Disables change: K 2 , Enables change: K 1	K1
\#20	Initializes functions. (Initializes functions at K1, then returns completed.)	ко
\#21	Writes I/O characteristics. (Returns automatically to Ko after write of offset/gain value is finished.)	ко
\#22	Sets convenient functions (data addition, upper/ ower limit value detection, sudden change detection and minimum/maximum value hold).	ко
:	Reserved	-
\#26	Upper/lower limit value error status (valid while BFM \#22 b1 is ON)	к0
\#27	A/D data sudden change detection status (valid while BFM \#22 b2 is ON)	ко
\#28	Scale over status	ко
\#29	Error status	K0
\#30	Model code (K2070)	K2070
\#31	Reserved	-
\#32	Operating time o to 64,800 (s) Subsequently, 64,800 is kept. on, and the measured value is on, and the measure power is turned off.	ко
:	Reserved	-
\#41	CH1 offset data (mV or $\mu \mathrm{A}$)	K0
\#42	$\mathrm{CH2}$ offset data (mV or $\mu \mathrm{A}$)	K0
\#43	CH 3 offset data (mV or $\mu \mathrm{A}$)	к0
\#44	CH 4 offset data (mV or $\mu \mathrm{A}$)	K0
:	Reserved	-
451	CH1 gain data (mV or $\mu \mathrm{A})$	k5000
\#52	CH2 gain data (mV or $\mu \mathrm{A}$)	K5000
\#53	$\mathrm{CH3}$ gain data (mV or $\mu \mathrm{A}$)	K5000
\#54	$\mathrm{CH4}$ gain data (mV or $\mu \mathrm{A}$)	K5000

6.2 Details of buffer memorie

BFM \#0: Specifies input mode.

each digit for each channel.
$\mathrm{O}=0$: Voltage input mode (-10 to $10 \mathrm{~V} \rightarrow-32000$ to 32000),
$\mathrm{O}=1$: Voltage in. int mode (-10 to $10 \mathrm{~V} \rightarrow-4000$ to 4000$)$, resolution 2.5 mV
$\mathrm{O}=2$: Voltage input mode $(-10$ to $10 \mathrm{~V} \rightarrow-10000$ to 10000$)$, resolution 1 mV

$=7$:Current input mode $(-20$ to to $20 \mathrm{~mA} \rightarrow-4000$ to 40000$)$, , esosolution $5.00 \mu \mathrm{~A}$
$=8:$ Current input mode $(-20$ to $20 \mathrm{~mA} \rightarrow-20000$ to 20000$)$, resolution $1.25 \mu \mathrm{~A}$ $\mathrm{O}=9$ to $\mathrm{E}:$:Unusable
$\mathrm{O}=\mathrm{F}:$ Corresponding CH is not used.
The input characteristics are changed automatically according to the setting of
BFM $\# 0$. (The inut characteristics can be $=2,5,8$ is set in BFM \#D that disables all changes to the offset or gain.)
It takes
set value).
Set value).
Time interval of 5 seconds or more after changing the input mode until the
write of each setting (TO instruction) is performed.
Setting "HFFFF" to allocate all channels as unusable is not allowed.
SFM \#2 to BFM \#5: Number of averaging times
Make sure to set the number of averaging times to "1" when using the digital
Tiler.)
The allowable set range of the number of averaging times is 1 to 4,095 .
(t)
The alowable set range of the number of averaging times is
If the number of averaging times is set to 1 ", the immediate data current value)
is stored in BFM \#10 to $\# 13$. Otherwise. BFM \#10 to s stored in BFM \#10 to \#13. Otherwise, BFM \#10 to BFM \#13 will be average
depending on the value set in BFM $\# 2$ to FRM \#5. If the number of averaging times is set to "0" or less, "0" is written. If the number
of averaging times is set to "4,096" or more, "4096" is written. In either case, umber of averaging times setting error (BFM \#29 b10) occurs. The initial see
nit

Average data update

When the number of averaging times (BFM \#2 to BFM \#5) is set to "400" or
less, the average (BFM \#10 to BFM \#13) is updated every time the A/D
conversion processing is performed.
The update time is as follows:
Average data update time $=($ A/D conversion time $) \times$ Number of channels
When the number of averaging times (BFM \#2 to BFM $\# 5$) is set to "401" or
more, the average (BFM \#10 to $B F M$ \#13) is updated every time the ADD
conversion is performed by as many as the set number of averaging times.
The e pdate time is as tollows:
Average data update time $=(A / D$ conversion time) \times Number of channels
Number of averaging times
In either case above, until the number of A / D conversion times reaches the set
number of averaging times for the first time, the average at each time point is stored in BFM \#10 to BFM \#13.
BFM \#6 to BFM \#9: Digital filter setting
eating BFM \#6 to BFM \#9 to "1" invokes, the diges is set to "1
or each channel. If the fluctuation of the analog input value is less be throvide the set
digital output value. If the analog input value exceeds the set value the
proceeding digital conversion value will follow and erceplicate the set values, the

By this function, unstable analog values can be converted into stable digital $\substack{\text { values } \\ \text { anald } \\ \text { value }}$ Analog input value
Digital output value Digita filter set value
The digital output value follows up the
analog input value. - analog input value. \longrightarrow Time
The table below shows the relaionship belween the set value of BFM \#6 to

 \begin{tabular}{l|l}

Set value $=0$	(BFM \#29 b11 turns ON.).
Digital filter function is invalia	

\hline
\end{tabular}

$1 \leq$ Set value $\leq 1,600$	Digital filter function is valid.
1	Digita filter function is invalid. Set value error occurs

| BFM \#10 to BFM \#13: Channel data |
| :--- | :--- |
| (BFM \#29 b11 turns ON.). |

The A/D conversion data for el data
BFM \#19: enabables or settisables thange setting change of the $/ / 0$ characteristics
(BFM \#0, \#41 to \#44, \#51 to \#54), the convenient functions (BFM \#22).
K1: Enables change (factory defaut).

K2: Disabies change.

BFM ± 20 I initiaizes functions

K0: Normal (voltage input, offset value K 0 , gain value K 5000).
11: Executes initialization. (Writes $K 1$, subsequently returns to $K 0$
when initialization is completed.).
BFM \#21: Writes IO characteristics
. 4 , 4 bits of BFM \#2
data (BFM \#51 to BFM \#F54) of the assigned channel No. are written to the
built-in memory (EEPROM). built-in memory (EEPROM).
"HF", all channels are written to.)
When the write is completed, BFM \#21 subsequently returns to KO .

BFM \#22: Sets convenient functions

a bit is is set to to ON, the assigned function becomes valid. When a bit is set to OFF the assigned function becomes invalid.
bo: Data addition function

The data (BFM \#10 to BFM \#13), minimum/maximum value (BFM \#101 to BFM \#104, BFM \#11 to DFM \#114) and data history (BRM \#200 to
BFM \#1799) of each channel is the measured value added by the
addition data (BFM \#61 to BFM \#64). addition data (BFM \#61 to BFM \#64)
When using this function, enter the value added by the addition data
(BFM \#61 to 8 HM \#64) to the lower limit value error set value (BFM
$\# 71$ to $B F M$ \# $\# 74$) and the upper limit value error set value (BFM $\# 81$ to
$\# 71$ to BFM \#74) and the upper limit value error set value (BFM \#81 to
BFM \#84).
The addition data (BFM \#61 to BFM \#64) is not added to the scale over
data (BFM \#28).
data (BFM \#28).
Upper/lower Iimit value detection function
When the A/D conversion data of each channel is outside the range of
the lower limit value error set value (BFM \#71 to $B F M$ \#74) to the upper limit value error set value (BFM \#81 to BFM \#8 B , the result is written to b2: Sudden change detection function

When the data (BFM \#10 to BFM \#13) of each channel is updated, if the difference between the previous value and the new value is larger
than the sudden change detection set value (BFM \#91 of BFM \#9),
the result is written to the sudden change detection status (BFM b3: Minimum/maximum value hold f function The minimum value of the data (BFM \#10 to BFM \#13) of each channel is written to BFM \#101 to BFM \#104, and the maximum value is written

BFM \#26: Upper/lower limit error status
 lower limit error status for the four channels is located in bit-pairs in the first
8bits of BFM $\$ 26$.
When When the data (BFM \#10 to BFM \#13) of any channel is outside the range
from the lower limit error value (BFM \#7 1 to BFM \#74) to the upper limit
error value (BFM \#81 to BFM \#84), the corresponding it the error value (BFM \#88 to BFM \#84), the corresponding bit turns ON.
When a bit turns 0 , it rem remains 0 Nutil it is reset by BFM \#99 or the
power is turned OFF.

Even while an upperllower limit value e error is detected, the data (BFM \#10
to BFM $\# 13$) of each channel continues to be updated.

Bit No.	Channel No .	Description
b0	CH1	Lower limit error
b^{1}		Upper limit error
b2	CH2	Lower limit error
b3		Upper limit error
b^{6}	СНз	Lower limit error
b5		Upper limit error
b6	CH4	Lower limit error
b7		Upper limit error

BFM \#27: A/D data sudden change detection status
The sudden change detection function (BFM $\# 2$ b) writes detected errors
 bit-pairs.
When the data (BFM \#10 to BFM \#13) of each channel is updated, if the difference between the previous value and the new value is larger than the
sudden change detection set value (BFM \#91 to $B F M$ \#94), the
corresponding bit in corresponding bit in $\mathrm{BFM} \# 27$ turns ON .
At this time when the new value is large thene previous value, a bit for
the + direction turns ON . when the new value is smaller than the previous value, a bit for the - direction turns ON.
When a bit turns ON, it remains ON until it is reset by BFM \#99 or the
power is turned OFF. ven while e a sudden change error is detected, the data (BFM \#10 to BFM
E13) of each channel continues to be updated. Bit assignment of BFM \#27

Bit No.	Channel No .	Description
b0		Sudden change error in - direction
b1	CH	Sudden change error in + direction
b2	СН2	Sudden change error in - direction
b3		Sudden change error in + direction
b4	CH3	Sudden change error in - direction
b5		Sudden change error in + direction
b6		Sudden change error in - direction
b7	CH4	Sudden change error in + direction

BFM \#28: Scale over status
The result of the analog input value for each individual channel that has
exceeded the A / D D conversion range wwill beach wr
Range in which A / D conversion is available:

Voltage input mode		Current input mode
10.2 t to 10.2 V		20.4 mA to 20.4 mA
A bit will remain ON unless it is reset from switching the Power OFF or overwriting the ON bit with an OFF bit via a TO instruction. Even while a scale over error is detected, the data (BFM \#10 to BFM \#13) of each channel continues to be updated. Bit assignment of BFM \#28		
Bit No.	Channel No.	Description
b0	CH1	Scale over: Less than lower limit
b1		Scale over: More than upper limit
b2	CH2	Scale over: Less than lower linit
b3	CH2	Scale over: More than upper lim
b	CH3	Scale over: Less than lower limit
${ }^{\text {b }}$		Scale over: More than upper limit
b6		Scale over: Less than lower limit
b7	CH4	Scale over: More than upper limit

BFM \#29: Error status
Error information is ass

Bit	Assignment	Description
No.	Eror detected	bo is ON while either b2 to b4 is ON.
b0	-	-

BFM \#200 to BFM \#1799: Data history

The A/D conversion value of each channel is sampled, and written to the No. and the BFM No. Data is stored in ascending order of the BFM
No. to 400 data history items are written for each channel. When the
un
number of history items exceeds 400 , the data is overwritten starting from umber of history items exceeds 400 , the data is overwritten starting from
the smallest BFM No. The data history function is valid only for channels whose number of
averaging times (BFM \#2 to \#5) is set to "1" and digital filter setting (BFM averaging times (BFM
$\# 6$ to $\# 9$) is set to " 0 ".

Channel NN.	BFM No.				
	1st value	2nd value	3rd value	$\cdots \cdots$	400th value
	$\# 200$	$\# 201$	$\# 202$	$\cdots \cdots$	$\# 599$
CH2	$\# 600$	$\# 601$	$\# 602$	$\cdots \cdots$	$\# 999$
CH3	$\# 1000$	$\# 1001$	$\# 1002$	$\cdots \cdots$	$\# 1399$
CH4	$\# 1400$	$\# 1401$	$\# 1402$	$\cdots \cdots$	$\# 1799$

If a considerable amount of data history is read from the PLC main unit
using a FROM ist using a r ROM instruction, a walch dog timer error occurs in the PLC
main unit. In such a case, divide the required data history using multiple FROM
instructions, and insert the WDT instruction (watch dog timer refresh instruction) after each FROM instructio

7. Adjustment of I/O Characteristics

For factory default, the FXXVC-4AD has standard I/O characteristics in
accordance with each input mode (BFM \#0).
in the voltage and current input mode, adjust the standard I/O
haracteristics for each channel. (Do not change the input characteristics characteristits for each channel.
when $2,5,8$ is set in BEM $\# 0$.)
7.1 Standard I/O characteristics

The input mode of the standard I / O characte
below:
$\frac{0}{(1)} \frac{\text { Voltage input, },-\frac{10 \text { to }}{(3)} 10 \mathrm{~V},-\frac{-32,000 \text { to } 32000}{(4)}}{}{ }^{(3)}$

3. Current inp
0 to 16000

$\begin{aligned} & \hline \text { Bit } \\ & \text { No. } \end{aligned}$	Assignment	Description
b2	Power error	24 V DC power is not correctly supplied. Check the wiring and supply voltage.
b3	Hardware error	FX2NC-4AD may have malfunctioned Contact the nearest Mitsubishi Electric System Service center
64	A/D conversion value error	A/D conversion value is abnormal. Using the scale over data (BFM \#28), check the channel in which the error has occurred.
b5	-	-
b6	BFM read/write disabled	This bit will be ON during the input characteristics change processing. While this bit is , correct A/D data will not read from or written to BFMs
${ }^{6}$	-	-
b8	Set value error detected	This bit will be ON while either b9 to b15 is On
b9	Input mode setting error	Input mode (BFM \#0) is incorrectly set. Set it within the range from 0 to 8 .
10	Number of averaging tumes setting error times setting error	Number of averaging times is incorrectly set. Set it within the range from 1 to 4,095 .
b11	Digital filter setting error	The digital filter setting is incorrect. Reset within the range of 0 to 1,600 .
b12	Sudden change detection set value error	Sudden change detection set value is incorrect. Set a correct value.
${ }^{\text {b13 }}$	Upper/lower limit set value error	Upperlower limit set value is incorrect. Set a correct value.
14	-	-
b15	Addition data setting error	Addition data is incorrectly set. Set it within range from $-16,000$ to 16,000 .

BFF \#30: Model code

of "K2070"

rese when the power is turred OFF.
The measurement range is from 0 to 64,800 (s). After that, 64,800 is kep.
BFM \#41 to BFM \#44: Offset data
BFM \#51 to BFM \#54: Gain data
Offset data: Analog innut value when the digital value is "0"
Gain data
Analog input value when the digital value is as shown below (The
digital value varies depending on the setting of the input mode.) Standard digigitial value vor ororiesset and and gaing in on the sestinting of tho the input mode.)

(A number in the input mode column indicates a value set in BFM \#0.) | Input mode (BFM \#0) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard offset value | 0 | 0 | - | 0 | 0 | - | 0 | 0 | - |
| Standard gain value | 16000 | 2000 | -16000 | 4000 | -16000 | 4000 | - | | | Standard gain value 16000 2000 \quad -

Write the set value in units of "mV" for voltage input or "HA" for current input.
Do not change the input characteristics when $O=2,5,8$ is set in $B F M$ \#

- Do not changge the input characteristics when $\mathrm{O}=2,5,8$ is set in BFM
(Even if an americal value is writte, it is ignored.)
Initial offsetgain value (Unit: mV for voltage input,

Input mode (BFM \#0)	0	1	${ }^{2}$	3	4	5	6	7	8
Initial offset value		0			4000			0	
Initial gain value		5000			20000				

Setting range		
	Voltage input	Current input
Offset data	-1000 to 9000 (mV)	-20000 to 17000 ($\mu \mathrm{A}$)
Gain data	Gain value - Offset value $=1,000$ to $10,000(\mathrm{mV})$	Gain value - Offset value $=3,000$ to $30,000(\mu \mathrm{~A})$

BFM \#61 to BFM \#64: Addition data

BFM \#61 to BFM \#64: Addition data (${ }^{\text {When using the data addition function (BFM \#22 bo), data (BFM \#10 to BFM }}$
\#13), minimum/maximum value (BFM \#101 to BFM \#104 BFM \#111 to BFM \#13), minimum/maximum value (BFM \#101 to BFM \#104, BFM \#111 to BFM
\#114) and data history (BFM \#200 to BFM \#1799) of each channel becomes the \#1 14) and data history (BFM \#200 o to BFM \#1799) of each channel becomes the
measured value added dy the addition data ((BFM \#61 to BFM \#64). When using the data addition function, enter the value added by the addition
data (BFM $\# 61$ to $B F M \# 64$) to the lower limit value error set value (BFM $\# 71$ to data (BFM \#61 to BFM \#54) to the lower limit value error set value (BFM \#7.
BFM \#7) and the upper limit value erro set value (BFM \#81 to BFM \#84).
Seting range: Senting range: and the upper limit valu to 16,000

BFF \#71 to BFM \#74: Lower limit, error set value
FFM \#81 to BFM \#88: Upper limit, error set value
When using the upper/lower limit value detection function (BFM \#22 b1), write
he lower limit value of each channel to BFM \#71 to BFM \#74 and the upper limit he ower limit value of each channel to BFM
alue of each channel to $\mathrm{BFM} \# 81$ to $\mathrm{BFM} \# 84$. When using the data addition function (BFM \#22 bo), enter the value added by he addition da
The seting range will vary depending on the seting of the input mode (BFM \#O).
The table below shows the setting range for each input mode. Enter the set

Input mode (BFM \#0)	Setting range	Initial value	
		$\begin{array}{\|l\|} \hline \text { Lower } \\ \text { limitit } \end{array}$	$\left\lvert\, \begin{gathered} \text { Upper } \\ \text { limit } \end{gathered}\right.$
0: Voltage input mode (-10 to $10 \mathrm{~V} \rightarrow-32000$ to 32000)	-32768 to 32767	-32768	32767
1: Voltage input mode (-10 to $10 \mathrm{~V} \rightarrow-4000$ to 4000)	-4096 to 4095	-4096	4095
2: Voltage input mode (-10 to $10 \mathrm{~V} \rightarrow-10000$ to 10000)	-10200 to 10200	-10200	10200
$\begin{aligned} & \text { 3: Current input mode } \\ & (4 \text { to } 20 \text { mA } \rightarrow 0 \text { to 16000) } \end{aligned}$	-1 to 16383	-1	16383
4: Current input mode (4 to $20 \mathrm{~mA} \rightarrow 0$ to 4000)	-1 to 4095	-1	4095
5: Current input mode (4 to $20 \mathrm{~mA} \rightarrow 4000$ to 20000)	3999 to 20400	3999	20400
6: Current input mode (-20 to $20 \mathrm{~mA} \rightarrow-16000$ to 16000)	-16384 to 16383	-16384	16383
7: Current input mode $\begin{gathered}\text { (-20 to } 20 \mathrm{~mA} \rightarrow-4000 \text { to 4000) }\end{gathered}$	-4096 to 4095	-4096	4095
8: Current input mode $(-20$ to $20 \mathrm{~mA} \rightarrow-20000$ to 20000 $)$	-20400 to 20400	-20400	20400

BFM \#91 to BFM \#94: Sudden change detection set value
When using the sudden change detection function (BFM \#22 b2), enter the set
When using the sudden change detection function (BFM \#22 b2), enter the set
value to judge the sudden change.
When the data (BFM \#10 to BFM \#13) of each channel is updated, if the When the data (BFM \#10 to BFM \#13) of each channel is updated, if the
difference between the previous value and the new value is arger than the
val surdence hangee detection sevt value 1 (BFM \#\#1 to BFM
Lothe sudden change detection status (BFM \#27)
She setting rang range will vary depending on the setting
(BII vary depending on the setting of the input mode (

Input mode (BFM \#0)	Setting range	Initial value
O: Voltage input mode $(-10$ to $10 \mathrm{~V} \rightarrow-32000$ to 32000) .	1 to 32767	3200
1: Voltage input mode $(-10$ to $10 \mathrm{~V} \rightarrow-4000$ to 4000$)$	1 to 4095	400
2: Voltage input mode $(-10$ to $10 \mathrm{~V} \rightarrow-10000$ to 10000)	1 to 10000	1000
$\begin{aligned} & \text { 3: Current input mode } \\ & (4 \text { to } 20 \mathrm{~mA} \rightarrow 0 \text { to 16000) } \end{aligned}$	1 to 8191	800
$\begin{array}{\|l\|l} \text { 4: Current input mode } \\ \quad(4 \text { to } 20 \mathrm{~mA} \rightarrow 0 \text { to } 4000) \end{array}$	1 to 2047	200
5: Current input mode(4 to $20 \mathrm{~mA} \rightarrow 4000$ to 20000)	1 to 8191	800
6: Current input mode $(-20$ to $20 \mathrm{~mA} \rightarrow-16000$ to 16000 $)$	1 to 16383	1600
7: Current input mode $\begin{gathered}\text { (-20 to } 20 \mathrm{~mA} \rightarrow-4000 \text { to 4000) }\end{gathered}$	1 to 4095	400
8: Current input mode $(-20$ to $20 \mathrm{~mA} \rightarrow-20000$ to 20000 $)$	1 to 20000	2000

BFM \#99: Clear
The commands to clear the lower and upper limit value error and the sudden
change detection error are assigned to the lower three bits of BFM \#99 Thange detection error are assigned to the ower three bits of BFM \#99.
The flag of the ocresponding gror status (BFM \#26, BFM \#27) is reset for all
channels simultaneously when a bit is set to channells simultaneously when a bitit is set to ON
After the reset is finished, each bit of BFM \#99 r
After the reset is finished, each bit of BFM \#99 returns automatically to the OFF
state.
The setting of two or more clear commands to ON at the same time is possible.
Bit assignment of BFM \#99

Bit No.	Description
b0	Clears lower limite error.
b1	Clears upper limit error.
b2	Clears sudden change detection error.
b3 to b15	Unusable

BFM \#101 to BFM \#104: Minimum value BFM \#111 to BFM \#114: Maximum valu

When using the minimum/maximum value hold function (BFM \#22 b3), the
minimum value of the data (BFM \#10 to BFM \#13) of each channel is minimum value of the data (BFM \#10 to BFM \#13) of each channel is
witten to BFM \#101 to 8 BFM \#104, and the maximum value is written to
BFM BFM \#111 to BFM \#114.
When using the data adition function (BFM \#2 b0), the minimum/
maximum measured value will be added to the addition data (BFM $\# 61$ to BFM \#44).
Bnitial value
Minimum/maximum value hold function is not used:Ko
Minimum/maximum value hodd function is
Digital value when the
BFM \#109: Minimum value reset
BFM \#1 19: Maximum value rese
When using the minimum/maximum value hold function (BFM $\# 22 \mathrm{~b} 3$),
BFM $\# 109$ cleara the minimum value stored in $\mathrm{BFM} \# 101$ to $\mathrm{BFM} \# 104$ BFM \#109 clears the minimum value stored in $\mathrm{BFM} \# 101$ to $\operatorname{BFM} \# 104$,
and BFM \#119 clears the maximum value stored in BFM $\# 111$ to BFM
$\# 114$. The channel No. that will be reset is assigned to each bit of BFM \#109 and
BFM \#119. When a bitis set ON, minimum/maximum value of the assigned channel is cleared. (Setting two or more bits ON simultaneously is
possible.)
Bit assi. Bit assignment

Set the data histor sory samping time

Set the data history sampling tim Senting range: 0 to $30,000 \mathrm{~ms}$
 Setting range: 0 to $30,000 \mathrm{~ms}$ Sampling cycle When the set

Whin tycle value is "0" $1 \mathrm{~ms} \times$ Number of effective channels
When the set value is 11 or more: Set value($\mathrm{chs} \times$ Number of effective
Chanels BFM \#199: Resets or stops data history
The data history reset function is assigned to the lower 4 bits of BFM \#199,
The data history stop function is assigned to the upper 4 bits of BFM \#199,
Data histors reset Data history reset tunction
This unction clears she sampled data history for each channel.
The channel No. to be reset is assigned to each of the lower 4 bits of BFM \#199. a bit is set to on, the data history (all contents from the 1 st value to
When
the 4000th value) of the assigned channel is cleared. (The setting of two or more bits to ON simultaneously is possible.)
When the clear operation is completed, eac

When the clear operation is completed, each the OFF state.

Assignment of lower 4 bits

Bit B $\mathbf{~ D ~} \mathbf{~ t o ~ b 4 ~}$	b3	b2	b1	b0	
Channel No.	Unusable	CH4	CH3	CH2	CH1

Data history stop function
This function will temporarily stop the data history for the individual channels. The channel No. to be temporariliy stopped is assigned to each
of the upper 4 bits of $B F M$ \#199. When a bit is set to O, sampling of the more ibist to ON at at atime.).
When a bit is set to OFF, sampling of the data history of the assigned channel restarts.
Assignment of upper 4 bits

Bit No.	b15 to b12	b11	b10	b9	b8
Channel No.	Unusable	CH4	CH3	CH2	CH1

8. Current input, -20 to 20 mA
$-20,000$ to 20,000

7.2 Adjustment of $1 / \mathrm{O}$ characteristics

Adjust the I/O characteristics using the buffer memories in the FX2NC-4AD Firstly, enter the input mode to BFM \#0, then enter the offset data to BFM \#41 BFM \#44, subsequently enter the gain data to BFM \#51 to BFM \#54.
Update the offset data and the gain datata for each channel using BFM \#2 Example program (Adjustment of $\mathrm{CH} 1, \mathrm{CH} 2$ and CH 4)

1 It takes approximately 5 seconds to change the input mode (BFM \#0) (to
change each set value).
Change each set value).
Assure that a time interval of 5 seconds or more is held after a change of the
input mode until execution of write of each setting (TO instruction). input mode until execution of write of each setting (TO instruction) more channels simultaneously.

. Example program

This section introduces an example program to read analog data from the
FX2NC-4AD and connecting to digitial data in the PLC. Condition
System configuration:
The FX 2NC--4AD is connected as a special function block nearest to the
FX2NC Series PLC main unit (unit No. 0). Input mode:
CH1 and CH2: Mode o 0 (voltage input, -10 to $10 \mathrm{~V} \rightarrow-32000$ to 32000)
CH3 and CH4: Mode 3 (current input, 4 to $20 \mathrm{~mA} \rightarrow 0$ to 16000) Number of averaging times : 1 (initial value) in each channel I/O characteristics: Standard //O characteristics (initial value) in each channel Standard I/O characteristics (initial value) in each channel
Convenient function: Upper/liwer limit value detection function is used.
Data history function: Data history function:
Used while sampling time is set to 0 ms (initial value)
CH 1 to $\mathrm{CH} 4:$ Sampling time $=1 \mathrm{~ms} \times 4$ (Number of effective channels) $=4 \mathrm{~ms}$
lis

 YO20 to Y037: Output scale over status of each channel.
xample program

\section*{| Initial pulse |
| :---: |
| M8002 |
| R |}

$\stackrel{\text { To }}{\text { To }}$ Hivicor elt
 fivo
 (ExCor wor
 (10ivor Refreshes. the watch
dog timer. $* 1$

The input mode setting will be kept by the EEPROM, therefore,
continual channel settings is not needed after powering down.
When multiple data history items are read, the scan time of the PLC
becomes longer.
becomes longer.
In the FX2nC Series PLC, when the scan time exceeds 200 ms , the CPU error indicator lamp lights and the PLC stops.
When reading many data history items, divide data history items to be
read using two or more FROM instructions, then insert the WDT (watch
dog timer refresh) instruction between FROM instructions.
※MISUBISHI ELECTRIC CORPORATION

