1	Introduction
2	Basic Program Instructions
3	STL Programming
4	Devices in Detail
5	Applied Instructions
6	Diagnostic Devices
7	Instruction Execution Times
8	PLC Device Tables
9	Assigning System Devices
10	Points of Technique
11	Index

Chapter Contents

	ed Instructions				
5.1 Pro	gram Flow-Functions00 to 09				5-4
5.1.1 5.1.3	CJ (FNC 00) SRET (FNC 02)	5-5 5-8	5.1.2 5.1.4	CALL (FNC 01) IRET, EI, DI (FNC 03, 04, 05)	
5.1.5	FEND (FNC 06)	5-11	5.1.6	WDT (FNC 07)	5-12
5.1.7	FOR, NEXT (FNC 08, 09)				E 40
5.2 Mo 5.2.1	ve And Compare - Functions 10 to CMP (FNC 10)	5 19 5-17	5.2.2	ZCP (FNC 11)	5-16 5-17
5.2.3	MOV (FNC 12)	5-18	5.2.4	SMOV (FNC 13)	5-18
5.2.5 5.2.7	CML (FNC 14) FMOV (FNC 16)		5.2.6 5.2.8	BMOV (FNC 15)	
5.2.9	BCD (FNC18)		5.2.10	XCH (FNC 17) BIN (FNC 19)	5-21 5-22
5.3 Ari	thmetic And Logical Operations -F	unctions 2	0 to 29	· · · · ·	5-24
5.3.1 5.3.3	ADD (FNC 20) MUL (FNC 22)	5-25	5.3.2 5.3.4	SUB (FNC 21) DIV (FNC 23)	
5.3.5	INC (FNC 22) INC (FNC 24)		5.3.4	INC (FNC 24)	
5.3.7	WAND (FNC 26)		5.3.8	WOR (FNC 27)	
5.3.9	WXOR (FNC 28)		5.3.10	NEG (FNC 29)	
5.4 Ro 5.4.1	tation And Shift - Functions 30 to 3	59 5-35	5.4.2	ROR (FNC 31)	
5.4.3	ROR (FNC 32)	5-36	5.4.4	ROR (FNC 33)	5-36
5.4.5 5.4.7	ROR (FNC 34) ROR (FNC 36)		5.4.6 5.4.8	ROR (FNC 35) ROR (FNC 37)	
5.4.9	SFWR (FNC 38)		5.4.10	SFRD (FNC 39)	
5.5 Da	ta Operation - Functions 40 to 49				
5.5.1 5.5.3	ZR\$T (FNC 40) ENCO (FNC 42)		5.5.2 5.5.4	ROR (FNC 41) SUM (FNC 43)	
5.5.5	BON (FNC 44)		5.5.6	MEAN (FNC 45)	
5.5.7	ANS (FNC 46)	5-47	5.5.8	ANR (FNC 47)	5-47
5.5.9 56 Lia	SQR (FNC 48) h Speed Processing - Functions ؛	5-48	5.5.10	FLT (FNC 49)	
5.6 Hig	REF (FNC 50)	5-53	5.6.2	REFF (FNC 51)	
5.6.3	MTR (FNC 52)	5-54	5.6.4	HSCS (FNC 53)	5-55
5.6.5 5.6.7	HSCR (FNC 54) SPD (FNC 56)		5.6.6 5.6.8	HSZ (FNC 55) PLSY (FNC 57)	
5.6.9	PWM (FNC 58)		5.6.10	PLSR (FNC 59)	
5.7 Ha	ndy Instructions - Functions 60 to	69			
5.7.1	IST (FNC 60)	5-67	5.7.2	SER (FNC 61) INCD (FNC 63)	
5.7.3 5.7.5	ABSD (FNC 62) TTMR (FNC 64)		5.7.4 5.7.6	STMR (FNC 65)	
5.7.7	ALT (FNC 66)	5-73	5.7.8	RAMP (FNC 67)	
5.7.9	ROTC (FNC 68)		5.7.10	SORT (FNC 69)	
5.8 Ext	ernal FX I/O Devices - Functions	70 to 79 5-81	5.8.2	HKY (FNC 71)	
5.8.3	DSW (FNC 72)	5-83	5.8.4	SEGD (FNC 73)	5-84
5.8.5 5.8.7	SEGL (FNC 74) ASC (FNC 76)		5.8.6 5.8.8	ARWS (FNC 75) PR (FNC 77)	
5.8.9	FROM (FNC 78)		5.8.10	TO (FNC 779)	
5.9 Ext	ernal FX Serial Devices - Function	ns 80 to 89			5-94
5.9.1 5.9.3	RS (FNC 80) ASCI (FNC 82)		5.9.2 5.9.4	PRUN (FNC 81) HEX (FNC 83)	
5.9.5	CCD (FNC 82)		5.9.6	VRRD (FNC 85)	
5.9.7	VRSD (FNC 86)		5.9.8	PID (FNC 88)	
	ating Point 1 & 2 - Functions 110 ECMP (FNC 110)				5-110
5.10.1 5.10.3	EBCD (FNC 118)	5-112	5.10.4	EZCP (FNC 111) EBIN (FNC 119)	5-112
5.10.5	EADD (FNC 120)	5-113	5.10.6	EAUB (FNC 121)	5-114
5.10.7 5.10.9	EMUL (FNC 122) ESQR (FNC 127)	5-114 5-115	5.10.8	EDIV (FNC 123) [′] INT (FNC 129)	5-115
	gonometry - FNC 130 to FNC 139				
5.11.1	SIN (FNC 130)	5-119		COS (FNC 131)	
5.11.3	TAN (FNC 132)				- 400
5.12 Da 5.13.1	ta Operations 2 - FNC 140 to FNC SWAP (FNC 147)	; 149 5-123			5-122
	1S & FX1N Positioning Control - F		50 to 1	59	5-126
5.13.1	ABS (FNC 155)		5.13.2	ZRN (FNC 156)	
5.13.3	PLSV (FNC 157)	5-129		DRVI (FNC 158)	
5.13.5 5 14 Po	DRVA (FNC 159) al Time Clock Control - FNC 160 t				5-126
5.14 Re 5.14.1	TCMP (FNC 160)	5-137	5.14.2	TZCP (FNC 161)	5-138
5.14.3	TADD (FNC 162)	5-139	5.14.4	TSUB (FNC 163)	5-140
5.14.5 5.14.7	TRD (FNC 166) HOUR (FNC 169)		5.14.6	TWR (FNC 167)	5-142
	ay Codes - FNC 170 to FNC 179.				5-146
5.15.1	GRY (FNC 170)	5-147	5.15.2	GBIN (FNC 171)	5-147
5.15.3	RD3A (FNC 176)	5-148		WR3A`(FNC 177)	
5.16 Inli 5.16.1	ne Comparisons - FNC 220 to FN LD compare (FNC 224 to 230)	C 249	5 16 0	AND compare (FNC 232 to 238)	5-150
5.16.3	OR compare (FNC 240 to 240)	5-153	5.10.2	compare (1 NO 202 10 200)	

5. Applied Instructions

FX1S FX1N FX2N FX2NC

Applied Instructions are the 'specialist' instructions of the FX family of PLC's. They allow the user to perform complex data manipulations, mathematical operations while still being very easy to program and monitor. Each applied instruction has unique mnemonics and special function numbers. Each applied instruction will be expressed using a table similar to that shown below:

Mnemonic	Function	Operands	Program steps
Minemonic Function -		D	r rogram steps
CJ FNC 00	A method of jumping to an	Valid pointers from the range 0 to 63	CJ,CJP:3steps
(Conditional Jump)	identified pointer position		Jump pointer P☆☆:1 step

The table will be found at the beginning of each new instruction description. The area identified as 'Operands' will list the various devices (operands) that can be used with the instruction. Various identification letters will be used to associate each operand with its function, i.e. D- destination, S- source, n, m- number of elements. Additional numeric suffixes will be attached if there are more than one operand with the same function.

Not all instructions and conditions apply to all PLC's. Applicable CPU's are identified by the boxes in the top right hand corner of the page. For more detailed instruction variations a second indicator box is used to identify the availability of pulse, single (16 bit) word and double (32 bit) word format and to show any flags that are set by the instruction.

16 BIT OPERATION	32 BIT OPERATION	PULSE-P
------------------	------------------	---------

The 'pulse' function allows the associated instruction to be activated on the rising edge of the control input. The instruction is driven ON for the duration of one program scan.

Thereafter, while the control input remains ON, the associated instruction is not active.

To re-execute the instruction the control input must be turned from OFF to ON again.

The FLAGS section identifies any flags that are used by the instruction. Details about the function of the flag are explained in the instructions text.

- For instructions that operate continuously, i.e. on every scan of the program the instruction will operate and provide a new, different result, the following identification symbol will be used '+' to represent a high speed changing state. Typical instructions covered by this situation have a strong incremental, indexable element to their operation.
 - In most cases the operands of applied instructions can be indexed by a users program. For those operands which **cannot** be indexed, the symbol '⊠' has been used to signify an operand as being 'fixed' after it has been written.

• Certain instructions utilize additional data registers and/or status flags for example a math function such as ADD (FNC 20) can identify a zero result, borrow and carry conditions by using preset auxiliary relays, M8020 to M8021 respectively.

Applied Instructions: FX_{1S} FX_{1N} FX_{2N} FX2NC **Program Flow** 1. FNC 00 - 09 5-4 Move And Compare 2. 5-16 FNC 10 - 19 Arithmetic And Logical Operations $(+, -, \times, \div)$ 3. FNC 20 - 29 5-24 **Rotation And Shift** 4. 5-34 FNC 30 - 39 5. **Data Operation** 5-42 FNC 40 - 49 6. High Speed Processing FNC 50 - 59 5-52 7. Handy Instructions FNC 60 - 69 5-66 External FX I/O Devices 8. FNC 70 - 79 5-80 9. **External FX Serial Devices** FNC 80 - 89 5-94 Floating Point 1 & 2 10. FNC 110-129 5-110 11. Trigonometry (Floating Point 3) FNC 130-139 5-118 12. **Data Operations 2** FNC 140-149 5-112 13. **Positioning Control** FNC 150-159 5-126 14. FNC 160-169 Real Time Clock Control 5-136 **Gray Codes** 15. FNC 170-179 5-146 **Additional Functions** 16. FNC 180-189 5-146 In-line Comparisons 17. FNC 220-249 5-150

5.1 **Program Flow-Functions 00 to 09**

FX1S	FX1N	FX2N	FX2NC
------	------	------	-------

Dago

Contents:

			Faye
CJ -	Conditional jump	FNC 00	5-5
CALL -	Call Subroutine	FNC 01	5-7
SRET -	Subroutine Return	FNC 02	5-8
IRET -	Interrupt Return	FNC 03	5-9
EI -	Enable Interrupt	FNC 04	5-9
DI -	Disable Interrupt	FNC 05	5-9
FEND -	First End	FNC 06	5-11
WDT -	Watchdog Timer	FNC 07	5-12
FOR -	Start of a For/Next Loop	FNC 08	5-13
NEXT -	End a For/Next Loop	FNC 09	5-13

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

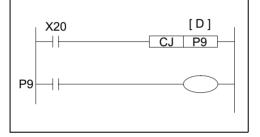
Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- かかか An instruction operating in 16 bit mode, where かかか identifies the instruction mnemonic.
- $rac{1}{3}$ $rac{1}{3}$ P A 16 bit mode instruction modified to use pulse (single) operation.
- D \Rightarrow \Rightarrow An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

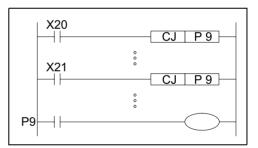

5.1.1 CJ (FNC 00)

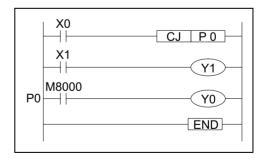
FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps	
interiorite i unction		D	r regram otopo	
CJ FNC 00 (Conditional Jump)	Jumps to the identified pointer position	Valid pointers from the range 0 to 63	CJ, CJP:3steps Jump pointer P☆☆: 1 step	

Operation:

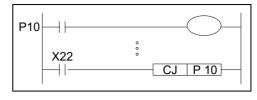
32 BIT OPERATION




When the CJ instruction is active it forces the program to jump to an identified program marker. While the jump takes place the intervening pro-gram steps are skipped. This means they are not processed in any way. The resulting effect is to speed up the programs operational scan time.

PULSE-P

Points to note:


- a) Many CJ statements can reference a single pointer.
- b) Each pointer must have a unique number. Using pointer P63 is equivalent to jumping to the END instruction.
- c) Any program area which is skipped, will not update output statuses even if the input devices change. For example, the program opposite shows a situation which loads X1 to drive Y1. Assuming X1 is ON and the CJ instruction is activated the load X1, out Y1 is skipped. Now even if X1 is turned OFF Y1 will remain ON while the CJ instruction forces the program to skip to the pointer P0. The reverse situation will also apply, i.e. if X1 is OFF to begin with and the CJ instruction is driven, Y1 will not be turned ON if X1 is turned ON. Once the CJ instruction is deactivated X1 will drive Y1 in the normal manner. This situation applies to all types of outputs, e.g. SET, RST, OUT, Y, M & S devices etc.

d) The CJ instruction can jump to any point within the main program body or after an FEND instruction

e) A CJ instruction can be used to Jump forwards through a program, i.e. towards the END instruction OR it can jump backwards towards step 0. If a backwards jump is used care must be taken not to overrun the watchdog timer setting otherwise the PLC will enter an error situation. For more information on the watchdog timer please see page 5-12.

f) Unconditional jumps can be entered by using special auxiliary coils such as M8000. In this situation while the PLC is in RUN the program will ALWAYS execute the CJ instruction in an unconditional manner.

IMPORTANT:

Timers and counters will freeze their current values if they are skipped by a CJ instruction.
 For example if Y1 in the previous program (see point c) was replaced by T0 K100 and the CJ instruction was driven, the contents of T0 would not change/increase until the CJ instruction is no longer driven, i.e. the current timer value would freeze.
 High speed counters are the only exception to this situation as they are processed independently of the main program.

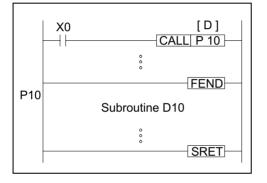
Using applied instructions:

 Applied instructions are also skipped if they are programmed between the CJ instruction and the destination pointer. However, The PLSY (FNC 57) and PWM (FNC 58) instructions will operate continuously if they were active before the CJ instruction was driven, otherwise they will be processed, i.e. skipped, as standard applied instructions.

Details of using CJ with other program flow instructions

• Further details can be found on pages 7-12 and 7-13 about the combined use of different program flow techniques (such as master control, MC etc).

5.1.2 CALL (FNC 01)

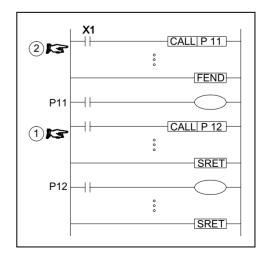

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps
		D	r regram otopo
CALL FNC 01	Executes the subroutine	Valid pointers from the range 0 to 62	CALL, CALLP: 3 step
(Call sub- routine)	program starting at the identified pointer position	Nest levels: 5 including the initial CALL	Subroutine pointer P☆☆: 1 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P



Operation:

When the CALL instruction is active it forces the program to run the subroutine associated with the called pointer (area identified as subroutine P10). A CALL instruction must be used in conjunction with FEND (FNC 06) and SRET (FNC 02) instructions. The program jumps to the subroutine pointer (located after an FEND instruction) and processes the contents until an SRET instruction is encountered. This forces the program flow back to the line of ladder logic immediately following the original CALL instruction.

Points to note:

- a) Many CALL statements can reference a single subroutine.
- b) Each subroutine must have a unique pointer number. Subroutine pointers can be selected from the range P0 to P62. Subroutine pointers and the pointers used for CJ (FNC 00) instructions are NOT allowed to coincide.
- c) Subroutines are not normally processed as they occur after an FEND instruction. When they are called, care should be taken not to overrun the watchdog timer setting. For more information on watchdog timers please see page 5-12.
- d) Subroutines can be nested for 5 levels including the initial CALL instruction. As an example the program shown opposite shows a 2 level nest. When X1 is activated the program calls subroutine P11. Within this subroutine is a CALL to a second subroutine P12. When both subroutines P11 and P12 are active simultaneously, they are said to be nested. Once subroutine P12 reaches its SRET instruction it returns the program control to the program step immediately following its original CALL (see ①). P11 then completes its operation, and once its SRET instruction is processed the program returns once again to the step following the CALL P11 statement (see ②).

Special subroutine timers:

• Because of the chance of intermittent use of the subroutines, if timed functions are required the timers used must be selected from the range T192 to T199 and T246 to T249.

Details of using CALL with other program flow instructions

• Further details can be found on pages 7-12 and 7-13 about the combined use of different program flow techniques (such as master control, MC etc).

5.1.3 SRET (FNC 02)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps
Witternottic		D	Frogram steps
SRET FNC 02 (Subroutine return)	Returns operation from a subroutine program	N/A Automatically returns to the step immediately following the CALL instruction which activated the subroutine.	SRET: 1 step

16 BIT OPERATION	32 BIT OPERATION	PULSE-P

Operation:

SRET signifies the end of the current subroutine and returns the program flow to the step immediately following the CALL instruction which activated the closing subroutine.

Points to note:

- a) SRET can only be used with the CALL instruction.
- b) SRET is always programmed after an FEND instruction please see the CALL (FNC 01) instruction for more details.

5.1.4 IRET, EI, DI (FNC 03, 04, 05)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands D	Program steps
IRET FNC 03 (Interrupt return)	Forces the program to return from the active interrupt routine	N/A Automatically returns to the main program step which was being processed at the time of the interrupt call.	IRET: 1 step
EI FNC 04 (Enable interrupts)	Enables interrupt inputs to be pro- cessed	N/A Any interrupt input being activated after an EI instruction and before FEND or DI instructions will be processed immediately unless it has been specifically disabled.	EI: 1 step
DI FNC 05 (Disable interrupts)	Disables the processing of interrupt routines	N/A Any interrupt input being activated after a DI instruction and before an EI instruction will be stored until the next sequential EI instruction is processed.	DI: 1 step
l (Interrupt pointer)	Identifies the beginning of an interrupt routine	A 3 digit numeric code relating to the interrupt type and operation.	l☆☆☆: 1 step

General description of an interrupt routine:

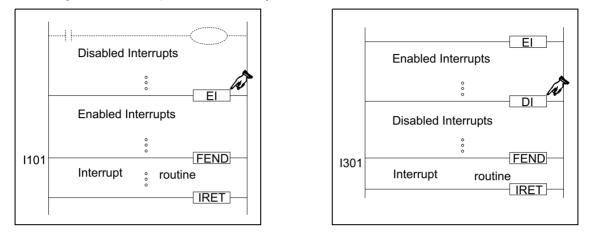
An interrupt routine is a section of program which is, when triggered, operated immediately interrupting the main program flow. Once the interrupt has been processed the main program flow continues from where it was, just before the interrupt originally occurred.

Operation:

Interrupts are triggered by different input conditions, sometimes a direct input such as X0 is used other times a timed interval e.g. 30 msec can be used. The availability of different interrupt types and the number operational points for each PLC type are detailed on page 4-12, Interrupt Pointers. To program and operate interrupt routines requires up to 3 dedicated instructions (those detailed in this section) and an interrupt pointer.

Defining an interrupt routine:

An interrupt routine is specified between its own unique interrupt pointer and the first occurrence of an IRET instruction.


Interrupt routines are ALWAYS programmed after an FEND instruction.

The IRET instruction may only be used within interrupt routines.

100	FEND	-
	Interrupt Program I001	
120	i IRET	>
	Interrupt Program I201	
	i IRET	

Controlling interrupt operations:

The PLC has a default status of disabling interrupt operation. The EI instruction must be used to activate the interrupt facilities. All interrupts which physically occur during the program scan period from the EI instruction until the FEND or DI instructions will have their associated interrupt routines run. If these interrupts are triggered outside of the enclosed range (EI-FEND or EI-DI, see diagram below) they will be stored until the EI instruction is processed on the following scan. At this point the interrupt routine will be run.

If an individual interrupt is to be disabled its associated special M coil must be driven ON. While this coil is ON the interrupt routine will not be activated. For details about the disabling M coils see the PLC device tables in chapter 8.

Nesting interrupts:

Interrupts may be nested for two levels. This means that an interrupt may be interrupted during its operation. However, to achieve this, the interrupt routine which may be further interrupted must contain the EI and DI instructions; otherwise as under normal operation, when an interrupt routine is activated all other interrupts are disabled.

Simultaneously occurring interrupts:

If more than one interrupt occurs sequentially, priority is given to the interrupt occurring first. If two or more interrupts occur simultaneously, the interrupt routine with the lower pointer number is given the higher priority.

Using general timers within interrupt routines:

FX PLC's have a range of special timers which can be used within interrupt routines. For more information please see page 4-18, Timers Used in Interrupt and 'CALL' Subroutines.

Input trigger signals - pulse duration:

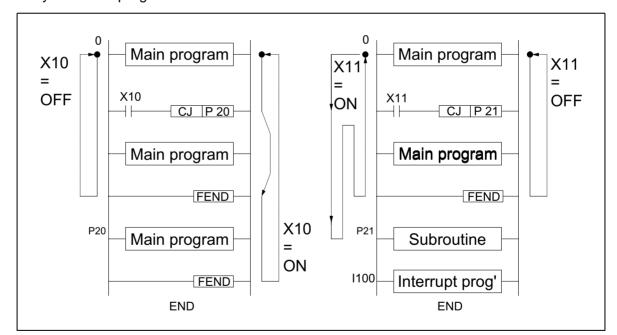
Interrupt routines which are triggered directly by interrupt inputs, such as X0 etc., require a signal duration of approximately 200µsec, i.e. the input pulse width is equal or greater than 200µsec. When this type of interrupt is selected, the hardware input filters are automatically reset to 50µsec. (under normal operating circumstances the input filters are set to 10msec.).

Pulse catch function:

Direct high speed inputs can be used to 'catch' short pulsed signals. When a pulse is received at an input a corresponding special M coil is set ON. This allows the 'captured' pulse to be used to trigger further actions, even if the original signal is now OFF. FX1s, FX1N, FX2N and FX2Nc units require the EI instruction (FNC 04) to activate pulse catch for inputs X0 through X5, with M8170 to M8175 indicating the caught pulse. Note that, if an input device is being used for another high speed function, then the pulse catch for that device is disabled.

5.1.5 FEND (FNC 06)

FX1s FX1N FX2N FX2NC


Mnemonic	Function	Operands	Program steps
Milenionio	i unotion	D	r rogram stops
FEND	Used to indicate	N/A	FEND:
FNC 06	the end of the	Note:	1 step
(First end)	main program	Can be used with CJ (FNC 00), CALL (FNC 01)	
	block	and interrupt routines	

Operation:

An FEND instruction indicates the first end of a main program and the start of the program area to be used for subroutines. Under normal operating circumstances the FEND instruction performs a similar action to the END instruction, i.e. output processing, input processing and watchdog timer refresh are all carried out on execution.

Points to note:

a) The FEND instruction is commonly used with CJ-P-FEND, CALL-P-SRET and I-IRET program constructions (P refers to program pointer, I refers to interrupt pointer).
 Both CALL pointers/subroutines and interrupt pointers (I) subroutines are ALWAYS programmed after an FEND instruction, i.e. these program features NEVER appear in the body of a main program.

- b) Multiple occurrences of FEND instructions can be used to separate different subroutines (see diagram above).
- c) The program flow constructions are NOT allowed to be split by an FEND instruction.
- d) FEND can never be used after an END instruction.

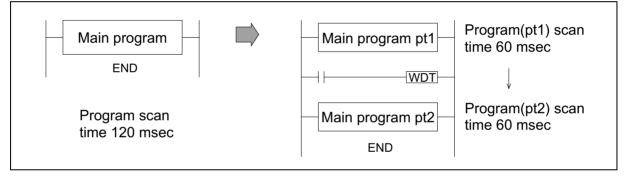
5.1.6 WDT (FNC 07)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps
	1 dilotion	D	r rogram stops
	Used to refresh the watch dog timer during a program scan	N/A Can be driven at any time within the main program body	WDT, WDTP: 1 step

16 BIT OPERATION

32 BIT OPERATION



The WDT instruction refreshes the PLC's watchdog timer. The watchdog timer checks that the program scan (operation) time does not exceed an arbitrary time limit. It is assumed that if this time limit is exceeded

PULSE-P

there is an error at some point. The PLC will then cease operation to prevent any further errors from occurring. By causing the watchdog timer to refresh (driving the WDT instruction) the usable scan (program operation) time is effectively increased.

Operation:

Points to note:

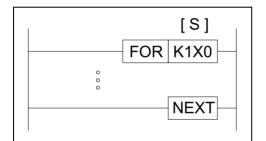
a) When the WDT instruction is used it will operate on every program scan so long as its input condition has been made.

To force the WDT instruction to operate for only ONE scan requires the user to program some form of interlock.

b) The watchdog timer has a default setting of 200 msec. This time limit may be customized to a users own requirement by editing the contents of data register D8000, the watchdog timer register.

M8000				1
	MOV	K150	D8000	_
I				I

5.1.7 FOR, NEXT (FNC 08, 09)


FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps
Whichiofic	i difetion	S	r rogram steps
FOR FNC 08 (Start of a FOR-NEXT loop)	Identifies the start position and the number of repeats for the loop	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z	FOR: 3 step
NEXT FNC 09 (End of a FOR-NEXT loop)	Identifies the end position for the loop	N/A Note: The FOR-NEXT loop can be nested for 5 lev- els, i.e. 5 FOR-NEXT loops are programmed within each other.	NEXT: 1 step

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

Operation:

The FOR and NEXT instructions allow the specification of an area of program, i.e. the program enclosed by the instructions, which is to be repeated S number of times.

Points to note:

- a) The FOR instruction operates in a 16 bit mode hence, the value of the operand S may be within the range of 1 to 32,767. If a number between the range -32,768 and 0 (zero) is specified it is automatically replaced by the value 1, i.e. the FOR-NEXT loop would execute once.
- b) The NEXT instruction has NO operand.
- c) The FOR-NEXT instructions must be programmed as a pair e.g. for every FOR instruction there **MUST** be an associated NEXT instruction. The same applies to the NEXT instructions, there **MUST** be an associated FOR instruction. The FOR-NEXT instructions must also be programmed in the correct order. This means that programming a loop as a NEXT-FOR (the paired NEXT instruction proceeds the associated FOR instruction) is **NOT** allowed.

Inserting an FEND instruction between the FOR-NEXT instructions, i.e. FOR-FEND- NEXT, is NOT allowed. This would have the same effect as programming a FOR without a NEXT instruction, followed by the FEND instruction and a loop with a NEXT and no associated FOR instruction.

- d) A FOR-NEXT loop operates for its set number of times **before** the main program is allowed to finish the current program scan.
- e) When using FOR-NEXT loops care should be taken not the exceed the PLC's watchdog timer setting. The use of the WDT instruction and/or increasing the watchdog timer value is recommended.

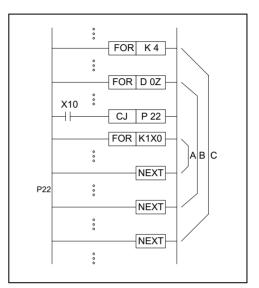
Nested FOR-NEXT loops:

FOR-NEXT instructions can be nested for 5 levels. This means that 5 FOR-NEXT loops can be sequentially programmed within each other.

In the example a 3 level nest has been programmed. As each new FOR-NEXT nest level is encountered the number of times that loop is repeated is increased by the multiplication of all of the surrounding/previous loops.

For example, loop C operates 4 times. But within this loop there is a nested loop, B. For every completed cycle of loop C, loop B will be completely executed, i.e. it will loop D0Z times. This again applies between loops B and A.

The total number of times that loop A will operate for ONE scan of the program will equal;


1) The number of loop A operations multiplied by

2) The number of loop B operations multiplied by

3) The number of loop C operations

If values were associated to loops A, B and C, e.g. 7, 6 and 4 respectively, the following number of operations would take place in ONE program scan:

Number of loop C operations = 4 times Number of loop B operations = 24 times (C \times B, 4 \times 6) Number of loop A operations = 168 times (C \times B \times A, 4 \times 6 \times 7)

Note:

The use of the CJ programming feature, causing the jump to P22 allows the 'selection' of which loop will be processed and when, i.e. if X10 was switched ON, loop A would no longer operate.

Applied Instructions:

FX1S FX1N FX2N FX2NC

1.	FNC 00 - 09	Program Flow	5-4
2.	FNC 10 - 19	Move And Compare	5-16
3.	FNC 20 - 29	Arithmetic And Logical Operations (+, -,	×, ÷) 5-24
4.	FNC 30 - 39	Rotation And Shift	5-34
5.	FNC 40 - 49	Data Operation	5-42
6.	FNC 50 - 59	High Speed Processing	5-52
7.	FNC 60 - 69	Handy Instructions	5-66
8.	FNC 70 - 79	External FX I/O Devices	5-80
9.	FNC 80 - 89	External FX Serial Devices	5-94
10.	FNC 110-129	Floating Point 1 & 2	5-110
11.	FNC 130-139	Trigonometry (Floating Point 3)	5-118
12.	FNC 140-149	Data Operations 2	5-122
13.	FNC 150-159	Positioning Control	5-126
14.	FNC 160-169	Real Time Clock Control	5-136
15.	FNC 170-179	Gray Codes	5-146
16.	FNC 180-189	Additional Functions	5-146
17.	FNC 220-249	In-line Comparisons	5-150

5.2 Move And Compare - Functions 10 to 19

Contents:

		Page
Compare	FNC 10	5-17
Zone Compare	FNC 11	5-17
Move	FNC 12	5-18
Shift Move	FNC 13	5-18
Compliment	FNC 14	5-19
Block Move	FNC 15	5-20
Fill Move	FNC 16	5-21
Exchange	FNC 17	5-21
Binary Coded Decimal	FNC 18	5-22
Binary	FNC 19	5-22
	Zone Compare Move Shift Move Compliment Block Move Fill Move Exchange Binary Coded Decimal	Zone CompareFNC 11MoveFNC 12Shift MoveFNC 13ComplimentFNC 14Block MoveFNC 15Fill MoveFNC 16ExchangeFNC 17Binary Coded DecimalFNC 18

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D_1 , S_3 or for lists/tabled devices D_{3+0} , S_{+9} etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- ななな An instruction operating in 16 bit mode, where ななな identifies the instruction mnemonic.
- 222P A = 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- + A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

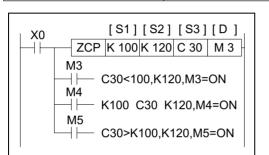
5.2.1 CMP (FNC 10)

FX1S FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
	runction	S1	S 2	D	r rogram steps
CMP FNC 10 (Compare)	Compares two data values - results of <, = and > are given.	K, H, KnX, KnY, KnM T, C, D, V, Z	, KnS,	Y, M, S Note: 3 consecutive devices are used.	CMP, CMPP: 7 steps DCMP, DCMPP: 13 steps

16 BIT OPERATION	32 BIT OPERAT	TION	PULSE-P	
X0 [S1] [CMP K 100 0 M0 H C20>K100, M1 C20=K100, M2 C20>K100, M2 C20>K100, M2	M0=ON M1=ON	result i the he indicate S2 is le S2 is ee	ata of S₁ is compared to is indicated by 3 bit dev ad address entered as	ices specified from D. The bit devices is ON is ON

Note: The destination (D) device statuses will be kept even if the CMP instruction is deactivated. Full algebraic comparisons are used, i.e. -10 is smaller than +2 etc.


5.2.2 ZCP (FNC 11)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands				Program steps
whemonic Function		S 1	S 2	S 3	D	Frogram steps
ZCP FNC 11 (Zone compare)	Compares a data value against a data range - results of <, = and > are given.	K, H, KnX, KnY, T, C, D, V, Note: S ₁ should	KnM, KnS Z be less tha		Y, M, S Note: 3 consecutive devices are used.	ZCP,Z CPP: 9 steps DZCP, DZCPP: 17 steps

32 BIT OPERATION

16	BIT	OPERATION	

Operation:

The operation is the same as the CMP instruction except a single data value (S_3) is compared against a data range (S_1-S_2) .

S3 is less than S1 and S2- bit device D is ON

PULSE-P

 $S_3 \, is$ equal to or between $S_1 \, and \, S_2$ - bit device $D_{\pm 1}$ is ON

 S_3 is greater than both S_1 and S_2 - bit device D_{+2} is ON

5.2.3 MOV (FNC 12)

FX1S FX1N FX2N FX2NC

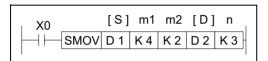
Mnemonic	Function	Oper	Program steps	
Whemonic	runction	S	D	
MOV FNC 12 (Move)	Moves data from one storage area to a new storage area	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z	KnY, KnM, KnS, T, C, D, V, Z	MOV, MOVP: 5 steps DMOV, DMOVP: 9 steps

16 BIT OPERATION	32 BIT OPERATION	PULSE-P	Flags	Zero M8020
		Operation:		
×0	[S] [D]	The contents of	the cou	urco dov

MOV H0050 D 10

The contents of the source device (S) is copied to the destination (D) device when the control input is active. If the MOV instruction is not driven, no operation takes place.

Note: This instruction has a special programming technique which allows it to mimic the operation of newer applied instructions when used with older programming tools. See page 1-5 for more details.


5.2.4 SMOV (FNC 13)

FX1s FX1N FX2N FX2NC

Mnemonic	Function		Operands)perands	
	Tunction	m 1	m2	n	S	D	Program steps
SMOV FNC 13 (Shift move)	decimal number and inserts them	K, H Note: available range 1 to 4. ⊠				K, H, KnY, KnM, KnS, T,C,D,V,Z	SMOV, SMOVP: 11 steps
	into a new 4 digit number				Range 0 to 9 mal) or 0 to 9 when M8168 see note op	9,999 (BCD) 8 is used -	

16 BIT OPERATION

32 BIT OPERATION

Operation 1:

This instruction copies a specified number of digits from a 4 digit decimal source (S) and places them at a specified location within a destination (D) number (also a 4 digit decimal). The existing data in the

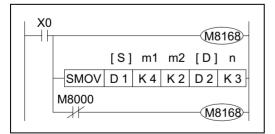
PULSE-P

destination is overwritten.

Key:

m1 - The source position of the 1st digit to be moved

m2 - The number of source digits to be moved


n- The destination position for the first digit

Note: The selected destination must NOT be smaller than the quantity of source data.

Digit positions are referenced by number: 1= units, 2= tens, 3= hundreds, 4=thousands.

FX1s	F X 1N	FX2N	FX2NC
------	---------------	------	-------

Operation 2: (Applicable units, FX_{2N} and FX_{2NC}). This modification of the SMOV operation allows BCD numbers to be manipulated in exactly the same way as the 'normal' SMOV manipulates decimal numbers, i.e. This instruction copies a specified number of digits from a 4 digit BCD source (S) and places them at a specified location within a destination (D) number (also a 4 digit BCD number).

To select the BCD mode the SMOV instruction is coupled with special M coil M8168 which is driven ON. Please remember that this is a 'mode' setting operation and will be active, i.e. all SMOV instructions will operate in BCD format until the mode is reset, i.e. M8168 is forced OFF.

General note:

For more information about 'decimal' and 'Binary Coded Decimal' (BCD) numbers please see the section titled 'Interpreting Word Data' on page 4-42 for more details.

5.2.5 CML (FNC 14)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Oper	Program steps	
Milemonie	T direction	S	D	r rogram steps
CML FNC 14 (Compliment)	Copies and inverts the source bit pattern to a specified destination	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z	KnY, KnM, KnS, T, C, D, V, Z	CML,CMLP: 5 steps DCML, DCMLP: 9 steps

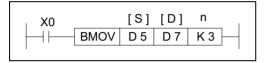
16 BIT OPERATION	32 BIT OPERATION	PULSE-P
	Operation	on:

X0 [S] [D] CML D0 K1Y0

A copy of each data bit within the source device (S) is inverted and then moved to a designated destination (D).

This means each occurrence of a '1' in the source data will become a '0' in the destination data while each source digit which is '0' will become a '1'. If the destination area is smaller than the source data then only the directly mapping bit devices will be processed.

5.2.6 BMOV (FNC 15)


FX1S FX1N FX2N FX2NC

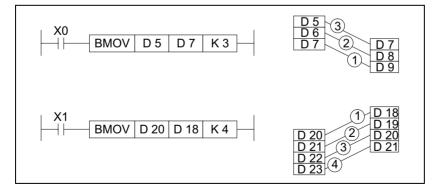
Mnemonic	Function	Operands		Operands	
Whetheric	i unction	S	D	n	Program steps
BMOV FNC 15 (Block move)	Copies a specified block of multiple data elements to a new destination	KnX, KnY, KnM, KnS, T,C,D, V, Z (RAM) File registers,	KnY, KnM, KnS, T, C, D, V, Z (RAM) File registers, see note d)	K, H D (FX2C, FX2N only) ⊠ Note: n≤ 512	BMOV, BMOVP: 7 steps

```
16 BIT OPERATION
```

32 BIT OPERATION

PULSE-P

Operation:


A quantity of consecutively occurring data elements can be copied to a new destination. The source data is identified as a device head address

(S) and a quantity of consecutive data elements (n). This is moved to the destination device (D) for the same number of elements (n).

Points to note:

- a) If the quantity of source devices (n) exceeds the actual number of available source devices, then only those devices which fall in the available range will be used.
- b) If the number of source devices exceeds the available space at the destination location, then only the available destination devices will be written to.
- c) The BMOV instruction has a built in automatic feature to prevent overwriting errors from occurring when the source (S - n) and destination (D -n) data ranges coincide. This is clearly identified in the following diagram:

(Note: The numbered arrows indicate the order in which the BMOV is processed)

d) Using file registers as the destination devices [D]may be performed on all units.

5.2.7 FMOV (FNC 16)

FX1s FX1N FX2N FX2NC

Mnemonic	Functio	on		(Operands		Program steps	
Whetheric	i unoti	011	S		D	n		
FMOV FNC 16 (Fill move)	Copies a sir data device range of destination devices		KnX, KnY, KnM, KnS, T, C, D, V, Z	Kn Kn T, (Y, KnM, S, C, D, V, Z	K, H ⊠ Note:n≤ 512	FMOV,FMOVP:7 steps DFMOV,DFMOVP : 13 steps	
16 BIT OPER	ATION	32 BI	T OPERATION		PUI	_SE-P		

_ X0		[S]	[D]	n
	FMOV	K 0	D 0	К 10

Operation:

The data stored in the source device (S) is copied to every device within the destination range. The range is specified by a device head address (D) and a

quantity of consecutive elements (n). If the specified number of destination devices (n) exceeds the available space at the destination location, then only the available destination devices will be written to.

Note: This instruction has a special programming technique which allows it to mimic the operation of newer applied instructions when used with older programming tools. See page 1-5 for more details.

5.2.8 XCH (FNC 17)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Oper	ands	Program steps
	i unotion	D1	D2	r rogram steps
XCH FNC 17 (Exchange) ≁	Data in the designated devices is exchanged	KnY, KnM, KnS, T, C, D Note: when using the by ON) D1 and D2 must be wise a program error wi M8067 will be turned OI	te XCH (i.e.M8160 is the same device other- ll occur and	XCH,XCHP: 5 steps DXCH, DXCHP: 9 steps

Operation 1: The contents of the two destination devices D₁ and D₂ are swapped, i.e. the complete word devices are exchanged. Ex.

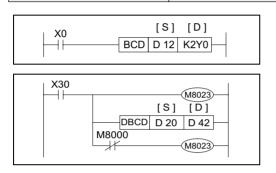
X0		[D1]	[D2]	-
	XCH(P)	D 1	D 17	-

Data register	Before XCH	After XCH
D1	20	530
D17	530	20

Operation 2: This function is equivalent to FNC 147 SWAP The bytes within each word of the designated devices D₁ are exchanged when 'byte mode flag' M8160 is ON. Please note that the mode will remain active until it is reset, i.e. M8160 is forced OFF. Ex.

X20	(M8160)
	[D1][D2]
	DXCH(P) D 10 D 10
	M8000 M8160

Values are in Hex for clarity		Before DXCH	After DXCH
D10	Byte 1	1FH	8Вн
	Byte 1	8BH	1FH
D11	Byte 1	С4н	35H
	Byte 1	35н	С4н


5.2.9 BCD (FNC18)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	ands	Program steps	
Witemonic	runction	S	D	r rogram steps
BCD FNC 18 (Binary coded decimal)	Converts binary numbers to BCD equivalents / Converts floating point data to scientific format	KnX,KnY, KnM, KnS, T, C, D, V, Z When using M8023 to con mat, only double word (32 be used. See page 4-46 fc floating point format.	bit) data registers (D) may	BCD, BCDP: 5 steps DBCD, DBCDP: 9 steps

16	BIT	OPERAT	'ION
----	-----	--------	------

32 BIT OPERATION

Operation: (Applicable to all units)

PULSE-P

The binary source data (S) is converted into an equivalent BCD number and stored at the destination device (D). If the converted BCD number exceeds the operational ranges of 0 to 9,999 (16 bit operation) and 0 to 99,999,999 (32 bit operation) an error will occur. This instruction can be used to output data directly to a seven segment display.

5.2.10 BIN (FNC 19)

FX1s FX1N FX2N FX2NC

Mnemonic	Function Operands Program		Operands			
Milenonic	runction	S	D	Program steps		
BIN FNC 19	Converts BCD numbers to their	KnX, KnY, KnM, KnS, T, C, D, V, Z	KnY, KnM, KnS, T, C, D, V, Z	BIN, BINP: 5 steps		
(Binary)	binary equivalent / Converts scientific format data to float- ing point format	When using M8023 to c point format, only doubl isters (D) may be used. details regarding floating	e word (32 bit) data reg- See page 4-46 for more	DBIN, DBINP: 9 steps		

16 BIT OPERATION	
------------------	--

32 BIT OPERATION PULSE-P

×0		[S]	[D]	
	BIN	K2X0	D 13	

Operation: (Applicable to all units)

The BCD source data (S) is converted into an equivalent binary number and stored at the destination device (D). If the source data is not

provided in a BCD format an error will occur. This instruction can be used to read in data directly from thumbwheel switches.

Applied Instructions:

FX1S FX1N FX2N FX2NC

1.	FNC 00 - 09	Program Flow	5-4
2.	FNC 10 - 19	Move And Compare	5-16
3.	FNC 20 - 29	Arithmetic And Logical Operations (+, -,	×, ÷) 5-24
4.	FNC 30 - 39	Rotation And Shift	5-34
5.	FNC 40 - 49	Data Operation	5-42
6.	FNC 50 - 59	High Speed Processing	5-52
7.	FNC 60 - 69	Handy Instructions	5-66
8.	FNC 70 - 79	External FX I/O Devices	5-80
9.	FNC 80 - 89	External FX Serial Devices	5-94
10.	FNC 110-129	Floating Point 1 & 2	5-110
11.	FNC 130-139	Trigonometry (Floating Point 3)	5-118
12.	FNC 140-149	Data Operations 2	5-122
13.	FNC 150-159	Positioning Control	5-126
14.	FNC 160-169	Real Time Clock Control	5-136
15.	FNC 170-179	Gray Codes	5-146
16.	FNC 180-189	Additional Functions	5-146
17.	FNC 220-249	In-line Comparisons	5-150

5.3 Arithmetic And Logical Operations -Functions 20 to 29

Contents:

			Page
ADD -	Addition	FNC 20	5-25
SUB -	Subtraction	FNC 21	5-26
MUL -	Multiplication	FNC 22	5-27
DIV -	Division	FNC 23	5-28
INC -	Increment	FNC 24	5-29
DEC -	Decrement	FNC 25	5-29
WAND -	Word AND	FNC 26	5-30
WOR -	Word OR	FNC 27	5-30
WXOR -	Word Exclusive OR	FNC 28	5-31
NEG -	Negation	FNC 29	5-31

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

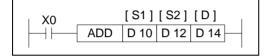
MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- かかか An instruction operating in 16 bit mode, where かかか identifies the instruction mnemonic.
- ポポヤ- A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

5.3.1 ADD (FNC 20)


FX1S | FX1N | FX2N | FX2NC

Mnemonic	Function		Program steps		
Witternottic	Tunction	S1	S2	D	Trogram steps
ADD FNC 20	The value of the two source	K, H, KnX, Kn T, C, D, V, Z	/, KnM, KnS,	KnY, KnM, KnS, T, C, D, V, Z	ADD, ADDP: 7 steps
(Addition)	devices is added and the result stored in the desti- nation device	only double wo constants (K/H	ord (32 bit) data) may be used.	ating point data, registers (D) or See page 4-46 ting point format.	DADD, DADDP: 13 steps

16 BIT OPERATION

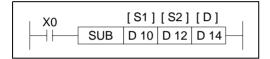
32 BIT OPERATION

PULSE-P

Operation: (Applicable to all units)

The data contained within the source devices (S_1,S_2) is combined and the total is stored at the specified destination device (D).

Points to note:


- a) All calculations are algebraically processed, i.e. 5 + (-8) = -3.
- b) The same device may be used as a source (S1 or S2) and as the destination (D). If this is the case then the ADD instruction would actually operate continuously. This means on every scan the instruction would add the result of the last scan to the second source device. To prevent this from happening the pulse modifier should be used or an interlock should be programmed.
- c) If the result of a calculation is "0" then a special auxiliary flag, M8020 is set ON.
- d) If the result of an operation exceeds 32,767 (16 bit limit) or 2,147,483,647 (32 bit limit) the carry flag, M8022 is set ON. If the result of an operation exceeds -32,768 or -2,147,483,648 the borrow flag, M8021 is set ON. When a result exceeds either of the number limits, the appropriate flag is set ON (M8021 or M8022) and a portion of the carry/borrow is stored in the destination device. The mathematical sign of this stored data is reflective of the number limit which has been exceeded, i.e. when -32,768 is exceeded negative numbers are stored in the destination device but if 32,767 was exceeded positive numbers would be stored at D.
- e) If the destination location is smaller than the obtained result, then only the portion of the result which directly maps to the destination area will be written, i.e if 25 (decimal) was the result, and it was to be stored at K1Y4 then only Y4 and Y7 would be active. In binary terms this is equivalent to a decimal value of 9 a long way short of the real result of 25!

5.3.2 SUB (FNC 21)

FX1s FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
Witemonic	runction	S 1	S2	D	Trogram steps
SUB FNC 21	One source device	K, H, KnX, KnY T, C, D, V, Z	′, KnM, KnS,	KnY, KnM, KnS, T, C, D, V, Z	SUB, SUBP: 7steps
(Subtract) is subtracted from the other - the result is stored in the destination device		When using M8023 to subtract data, only double word (32 bit) (D) or constants (K/H) may be 4-46 for more details regarding format.) data registers used. See page	DSUB, DSUBP: 13 steps

16 BIT OPERATION	32 BIT OPERATION	PULSE-P	Flags	Zero M8020 Borrow M8021 Carry M8022	
------------------	------------------	---------	-------	---	--

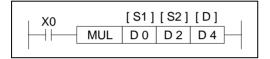
Operation: (Applicable to all units)

The data contained within the source device, S_2 is subtracted from the contents of source device S_1 . The result or remainder of this calculation is stored

in the destination device D.

Note: the 'Points to note', under the ADD instruction (previous page) can also be similarly applied to the subtract instruction.

5.3.3 MUL (FNC 22)


FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands			Program steps
	i unotion	S1	S2	D	r rogram steps
MUL FNC 22	Multiplies the two source devices	K, H, KnX, KnY T, C, D, V, Z	, KnM, KnS,	KnY,KnM,KnS, T, C, D, Z(V)	MUL, MULP: 7steps
(Multiplica -tion)	together the result is stored in the destination device	See page 4-46 details regardin point format.		Note: Z(V) may NOT be used for 32 bit oper- ation	DMUL, DMULP: 13 steps
		When using M8023 to subtract data, only double word (32 bit) o (D) or constants (K/H) may be u		data registers	

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

Operation: (Applicable to all units)

The contents of the two source devices (S1, S2) are multiplied together and the result is stored at the destination device (D). Note the normal rules of algebra apply.

Points to note:

a) When operating the MUL instruction in 16bit mode, two 16 bit data sources are multiplied together. They produce a 32 bit result. The device identified as the destination address is the lower of the two devices used to store the 32 bit result. Using the above example with some test data:

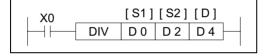
5 (D0) \times 7 (D2) = 35 - The value 35 is stored in (D4, D5) as a single 32 bit word.

- b) When operating the MUL instruction in 32 bit mode, two 32 bit data sources are multiplied together. They produce a 64 bit result. The device identified as the destination address is the lower of the four devices used to store the 64 bit result.
- c) If the location of the destination device is smaller than the obtained result, then only the portion of the result which directly maps to the destination area will be written, i.e if a result of 72 (decimal) is to be stored at K1Y4 then only Y7 would be active. In binary terms this is equivalent to a decimal value of 8, a long way short of the real result of 72!

Viewing 64 bit numbers

 It is currently impossible to monitor the contents of a 64 bit result. However, the result can be monitored in two smaller,32 bit, blocks, i.e. a 64 bit result is made up of the following parts: (upper 32 bits) × 2 ³² + (lower 32 bits).

5.3.4 DIV (FNC 23)


FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands			Program steps
		S1	S2	D	r rogram steps
DIV FNC 23	Divides one source value by	K, H, KnX, KnY, KnM, KnS,T, C, D, V, Z		KnY, KnM, KnS, T, C, D, Z(V)	DIV,DIVP: 7steps
(Division)	another the result is stored in the destination device	details regarding floating		NOT be used for	DDIV, DDIVP: 13 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

Operation: (Applicable to all units)

The primary source (S_1) is divided by the secondary source (S_2) . The result is stored in the destination (D). Note the normal rules of algebra apply.

Points to note:

a) When operating the DIV instruction in 16bit mode, two 16 bit data sources are divided into each other. They produce two 16 bit results. The device identified as the destination address is the lower of the two devices used to store the these results.

This storage device will actually contain a record of the number of whole times S₂ will divide into S₁ (the quotient).

The second, following destination register contains the remained left after the last whole division (the remainder). Using the previous example with some test data:

51 (D0) ÷ 10 (D2) = 5(D4) 1(D5)

This result is interpreted as 5 whole divisions with 1 left over $(5 \times 10 + 1 = 51)$.

- b) When operating the DIV instruction in 32 bit mode, two 32 bit data sources are divided into each other. They produce two 32 bit results. The device identified as the destination address is the lower of the two devices used to store the quotient and the following two devices are used to store the remainder, i.e. if D30 was selected as the destination of 32 bit division operation then D30, D31 would store the quotient and D32, D33 would store the remainder. If the location of the destination device is smaller than the obtained result, then only the portion of the result which directly maps to the destination area will be written. If bit devices are used as the destination area, no remainder value is calculated.
- c) If the value of the source device S₂ is 0 (zero) then an operation error is executed and the operation of the DIV instruction is cancelled.

5.3.5 INC (FNC 24)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands D	Program steps
INC FNC 24 (Increment)	The designated device is incremented by 1	KnY, KnM, KnS, T, C, D, V, Z Standard V,Z rules apply for 32 bit operation	INC,INCP: 3 steps
→	on every execution of the instruction		DINC, DINCP: 5 steps

```
16 BIT OPERATION
```

32 BIT OPERATION

PULSE-P

X0	[D]		
	INC D 10		

Operation:

On every execution of the instruction the device specified as the destination D, has its current value incremented (increased) by a value of 1.

In 16 bit operation, when +32,767 is reached, the next increment will write a value of -32,768 to the destination device.

In 32 bit operation, when +2,147,483,647 is reached the next increment will write a value of -2,147,483,648 to the destination device.

In both cases there is no additional flag to identify this change in the counted value.

5.3.6 DEC (FNC 24)

FX1s FX1N FX2N FX2NC

Mnemonic	Function D		Program steps	
DEC FNC 25 (Decrement)	The designated device is decremented by 1	KnY, KnM, KnS, T, C, D, V, Z Standard V,Z rules apply for 32 bit operation	DEC,DECP: 3 steps	
↔	on every execution of the instruction		DDEC, DDECP: 5 steps	

```
16 BIT OPERATION
```

32 BIT OPERATION

PULSE-P

Operation:

On every execution of the instruction the device specified as the destination D, has its current value decremented (decreased) by a value of 1.

In 16 bit operation, when -32,768 is reached the next increment will write a value of +32,767 to the destination device.

In 32 bit operation, when -2,147,483,648 is reached the next increment will write a value of +2,147,483,647 to the destination device.

In both cases there is no additional flag to identify this change in the counted value.

5.3.7 WAND (FNC 26)

FX1s FX1N FX2N FX2NC

Mnemonic	Function		Program steps			
	i unotion	S1	S1 S2 D		r rogram stops	
WAND FNC 26 (Logical word AND)	A logical AND is performed on the source devices - result stored at destination	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z		KnY, KnM, KnS, T, C, D, V, Z	WAND,WANDP: 7 steps DAND, DANDP: 13 steps	

16 BIT OPERATION

32 BIT OPERATION

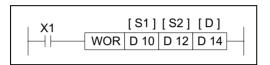
X0 [S1][S2][D] WAND D 10 D 12 D 14

Operation:

The bit patterns of the two source devices are analyzed (the contents of S₂ is compared against the contents of S₁). The result of the logical AND analysis is stored in the destination device (D).

PULSE-P

The following rules are used to determine the result of a logical AND operation. This takes place for every bit contained within the source devices:


5.3.8 WOR (FNC 27)

FX1s FX1N FX2N FX2NC

Mnemonic	Function		Program steps			
	T unction	S1 S2		D	eg. an otopo	
WOR FNC 27 (Logical word OR)	A logical OR is performed on the source devices - result stored at destination	K,H, KnX,KnY, KnM T, C, D, V, Z	, KnS,	KnY, KnM, KnS, T, C, D, V, Z	WOR,WORP: 7 steps DOR, DORP: 13 steps	

16 BIT OPERATION

32 BIT OPERATION

Operation:

The bit patterns of the two source devices are analyzed (the contents of S₂ is compared against the contents of S₁). The result of the logical OR analysis is stored in the destination device (D).

PULSE-P

The following rules are used to determine the result of a logical OR operation. This takes place for every bit contained within the source devices:

General rule: (S1) Bi	t n WOR (S ₂) Bit $n = (D)$ Bit n
1 WOR 1 = 1	0 WOR 1 = 1
1 WOR 0 = 1	0 WOR 0 = 0

5.3.9 WXOR (FNC 28)

FX1s FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
	T unotion	S1 S2		D	r rogram steps
WXOR FNC 28 (Logical exclusive OR)		K, H KnX, KnY, Kn№ T, C, D, V, Z	/I, KnS,	KnY, KnM, KnS, T, C, D, V, Z	WXOR, WXORP: 7 steps DXOR,DXORP 13 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

The bit patterns of the two source devices are analyzed (the contents of S₂ is compared against the contents of S₁). The result of the logical XOR analysis is stored in the destination device (D).

PULSE-P

The following rules are used to determine the result of a logical XOR operation. This takes place for every bit contained within the source devices:

5.3.10 NEG (FNC 29)

FX1s FX1N FX2N FX2NC

Programmable Controlers	

Mnemonic Function		Operands	Program steps
	i unotion	D	r rogram stops
NEG FNC 29 (Negation) ナ	Logically inverts the contents of the designated device	KnY, KnM, KnS, T, C, D, V, Z	NEG,NEGP: 3 steps DNEG, DNEGP: 5 steps

16	BIT	OPERATION

32 BIT OPERATION

X0	[D]
	NEG D 10

Operation:

The bit pattern of the selected device is inverted. This means any occurrence of a '1' becomes a '0' and any occurrence of a '0' will be written as a '1'.

PULSE-P

When this is complete, a further binary 1 is added to the bit pattern. The result is the total logical sign change of the selected devices contents, e.g. a positive number will become a negative number or a negative number will become a positive.

MEMO

Applied Instructions: FX₁s FX1N FX_{2N} FX2NC **Program Flow** 1. 5-4 FNC 00 - 09 2. Move And Compare 5-16 FNC 10 - 19 Arithmetic And Logical Operations $(+, -, \times, \div)$ 3. FNC 20 - 29 5-24 **Rotation And Shift** 4. 5-34 FNC 30 - 39 **Data Operation** 5. 5-42 FNC 40 - 49 6. High Speed Processing FNC 50 - 59 5-52 7. Handy Instructions FNC 60 - 69 5-66 External FX I/O Devices 8. FNC 70 - 79 5-80 9. **External FX Serial Devices** FNC 80 - 89 5-94 10. Floating Point 1 & 2 FNC 110-129 5-110 11. Trigonometry (Floating Point 3) FNC 130-139 5-118 12. **Data Operations 2** FNC 140-149 5-122 13. **Positioning Control** FNC 150-159 5-126 14. FNC 160-169 Real Time Clock Control 5-136 **Gray Codes** 15. FNC 170-179 5-146 **Additional Functions** 16. FNC 180-189 5-146 **In-line Comparisons** 17. FNC 220-249 5-150

Done

5.4 Rotation And Shift - Functions 30 to 39

Contents:

			i aye
ROR -	Rotation Right	FNC 30	5-35
ROL -	Rotation Left	FNC 31	5-35
RCR -	Rotation Right with Carry	FNC 32	5-36
RCL -	Rotation Left with Carry	FNC 33	5-36
SFTR -	(Bit) Shift Right	FNC 34	5-37
SFTL -	(Bit) Shift Left	FNC 35	5-37
WSFR -	Word Shift Right	FNC 36	5-38
WSFL -	Word Shift Left	FNC 37	5-38
SFWR -	Shift Register Write	FNC 38	5-39
SFRD -	Shift Register Read	FNC 39	5-40

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D_1 , S_3 or for lists/tabled devices D_{3+0} , S_{+9} etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

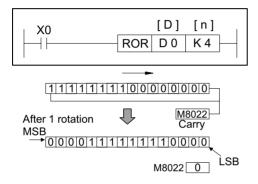
LSB - Least Significant Bit.

Instruction modifications:

- ななな An instruction operating in 16 bit mode, where ななな identifies the instruction mnemonic.
- $rac{h}{h}rac{h}{h}P$ A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

5.4.1 ROR (FNC 30)

FX1s FX1N FX2N FX2NC


Flags

Carry M8022

Mnemonic Function		Oper	Program steps	
	T unction	D	n	r rogram steps
ROR FNC 30 (Rotation right) ≁	the destination device is rotated 'n' places to the right on every	KnY, KnM, KnS, T, C, D, V, Z Note: 16 bit operation Kn=K4, 32 bit operation Kn=K8	K, H, Note: 16 bit operation $n \le 16$ 32 bit operation $n \le 32$	ROR, RORP: 5 steps DROR, DRORP: 9 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

The bit pattern of the destination device (D) is rotated n bit places to the right on every operation of the instruction.

PULSE-P

The status of the last bit rotated is copied to the carry flag M8022.

The example shown left is based on the instruction noted above it, where the bit pattern represents the contents of D0.

5.4.2 ROL (FNC 31)

MSB Carry

1 M8022

After 1 rotation

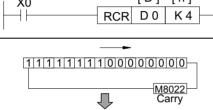
LSB

11110000000011111

FX1s FX1N FX2N FX2NC

Mnemonic	Funct		Ор	erands	Pro	gram steps		
			S	S D			r rogram stops	
ROL FNC 31 (Rotation left) ≁	The bit pat the destina device is ro 'n' places t left on even execution	ition otated o the	KnY, KnM, Kn T, C, D, V, Z Note: 16 bit operatio Kn= K4, 32 bit operatio Kn= K8	n	K, H, Kote: 16 bit operation $n \le 16$ 32 bit operation $n \le 32$	5 ste DRC DRC	· ·L, ·LP:	
16 BIT OPERATION 32 BIT OPERA			COPERATION		PULSE-P	Flags	Carry M8022	
			— Оре	ration	:			
X0 [D] [n] ROL D0 K4			n bi instr The	t place	of the last bit rotated i	ry ope	ration of th	

The example shown left is based on the instruction noted above it, where the bit pattern represents the contents of D0.


5.4.3 RCR (FNC 32)

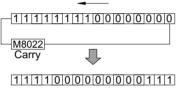
FX1s FX1N FX2N FX2NC

Mnemonic	Functi	on		Operands			gram steps
)	n		gram stops
RCR FNC 32 (Rotation right with carry) ↔	The conten the destinat device are right with 1 extracted to carry flag	tion rotated bit	KnY, KnM, KnS, T, C, D, V, Z Note: 16 bit operation Kn= K4, 32 bit operation Kn=K8		K, H, ⊠ Note: 16 bit operation n≤ 16 32 bit operation n≤ 32	5 ste DRC DRC	R, RP:
16 BIT OPERATION 32 BIT OPERATION			N	PULSE-P	Flags	Carry M8022	
X0	X0 [D] [n] RCR D0 K4 CRCR CRCR CRCR CRCR CRCR CRCR CRCR CRC						

The status of the last bit rotated is moved into the carry flag M8022. On the following operation of the instruction M8022 is the first bit to be moved back into the destination device.

The example shown left is based on the instruction noted above it, where the bit pattern represents the contents of D0.

00001111111110000 M80220


5.4.4 RCL (FNC 33)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Oper	ands	Program steps
Winchiofile	i difetioni	S	D	r rogram steps
RCL FNC 33 (Rotation left with carry) ≁	The contents of the destination device are rotated left with 1 bit extracted to the carry flag	KnY, KnM, KnS, T, C, D, V, Z Note: 16 bit operation Kn= K4, 32 bit operation Kn= K8	K, H, ⊠ Note: 16 bit operation n≤ 16 32 bit operation n≤ 32	RCL, RCLP: 5 steps DRCL, DRCLP: 9 steps

16 BIT OPERATION	32 BIT OPERATION	PULSE-P	Flags	Carry M8022	

1 M8022

Operation:

The bit pattern of the destination device (D)is rotated n bit places to the left on every operation of the instruction.

The status of the last bit rotated is moved into the carry flag M8022. On the following operation of the instruction M8022 is the first bit to be moved back into the destination device.

The example shown left is based on the instruction noted above it, where the bit pattern represents the contents of D0.

5.4.5 SFTR (FNC 34)

FX1S FX1N FX2N FX2NC

Mnemonic	Function		Oper	ands		Program steps
	i unotion	S	D	n 1	n2	r rogram stops
SFTR FNC 34 (Bit shift right) ≁	source devices are		Y, M, S	K,H, Mote: FX users: $n_2 \le n_1 \le 10$ FX0,FX0N us $n_2 \le n_1 \le 51$	sers:	SFTR,SFTRP: 9 steps

16 BIT OPERATION

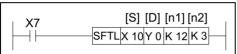
32 BIT OPERATION

[S] [D] [n1] [n2] X6 SFTR X 0 M 0 K 16 K 4 +

Operation:

The instruction copies n₂ source devices to a bit stack of length n₁. For every new addition of n₂ bits, the existing data within the bit stack is shifted n₂ bits to the right. Any bit data moving to a position exceeding the n₁ limit is diverted to an overflow area. The bit shifting operation will occur every time the instruction is processed unless it is modified with either the pulse suffix or a controlled interlock.

PULSE-P


X3 X2 X1 X0

M15M14M13M12-M11M10 M9 M8-M7 M6 M5 M4-M3 M2 M1 M0

5.4.6 SFTL (FNC 35)

FX_{1S} FX1N FX_{2N} FX2NC

Mnemonic	Function			Operands			
Mileinoino			S	D	n 1	n2	Program steps
SFTL FNC 35 (Bit shift left) ≁	The status of source devi- copied to a controlled b moving the data to the I	ces are it stack existing	X, Y, M, S	Y, M, S	K,H, Mote: FX users: nz FX0,FX0N us $n_2 \le n_1 \le 512$	ers:	SFTL,SFTLP: 9steps
16 BIT OPER	ATION	32 Bl	T OPERATIO	DN	PULSE-	P	

Y13 Y12 Y11 Y10 Y7 Y6 Y5 Y4 Y3

Operation:

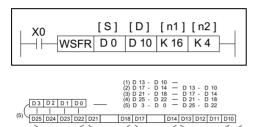
The instruction copies n2 source devices to a bit stack of length n1. For every new addition of n2 bits, the existing data within the bit stack is shifted n2bits to the left. Any bit data moving to a position exceeding the n1 limit is diverted to an overflow area. The bit shifting operation will occur every time the instruction is processed unless it is modified with either the pulse suffix or a controlled interlock.

X7	[S] [D] [n1] [n2]				
	SFTLX 10 Y 0 K 12 K 3				

X12 X11 X10

Y2 Y1 Y0

5.4.7 WSFR (FNC 36)


FX1s FX1N FX2N FX2NC

Mnemonic	emonic Function		Operands				
Milenonie	i difetion	S	D	n 1	n2	Program steps	
WSFR FNC 36 (Word shift right) ≁	The value of the source devices are copied to a controlled word stack moving the existing data to the right	KnX, KnY, KnM,KnS, T, C, D		K,H, ⊠ Note: FX users: n	2≤n1≤512	WSFR, WSFRP: 9 steps	

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

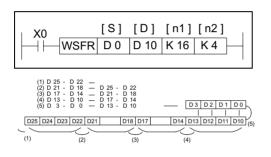
(3)

Operation:

The instruction copies n₂ source devices to a word stack of length n₁. For each addition of n₂ words, the existing data within the word stack is shifted n₂words to the right. Any word data moving to a position exceeding the n₁ limit is diverted to an overflow area. The word shifting operation will occur every time the instruction is processed unless it is modified with either the pulse suffix or a controlled interlock. **Note**: when using bit devices as source (S) and

destination (D) the Kn value must be equal.

5.4.8 WSFL (FNC 37)


FX1s FX1N FX2N FX2NC

Mnemonic	Function		Оре	rands		Program steps
Whentome	runction	S	D	n 1	n2	r rogram steps
WSFL FNC 37 (Word shift left) ≁	The value of the source devices are copied to a controlled word stack moving the existing data to the left	KnX, KnY, KnM,KnS, T, C, D		K,H, ⊠ Note: FX users: n₂≤n1≤512		WSFL, WSFLP: 9 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

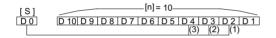
Operation:

The instruction copies n₂ source devices to a word stack of length n₁. For each addition of n₂ words, the existing data within the word stack is shifted n₂words to the left. Any word data moving to a position exceeding the n₁ limit is diverted to an overflow area. The word shifting operation will occur every time the instruction is processed unless it is modified with either the pulse suffix or a controlled interlock.

Note: when using bit devices as source (S) and destination (D) the Kn value must be equal.

5.4.9 SFWR (FNC 38)

FX1s FX1N FX2N FX2NC


Flags

Carry M8022

Mnemonic	Function		Operands		Program steps
Milenionie	T direction	S	D	N	r rogram steps
SFWR FNC 38 (Shift register write) ≁	This instruction creates and builds a FIFO stack n devices long -must be used with SFRD FNC 39	K, H, KnX, KnY, KnM,KnS, T, C, D, V, Z	KnY, KnM, KnS, T, C, D,	K, H, ⊠ Note: 2≤ n≤ 512	SFWR, SFWRP: 7 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

The contents of the source device (S) are written to the FIFO stack. The position of insertion into the stack is automatically calculated by the PLC.

PULSE-P

The destination device (D) is the head address of the FIFO stack. The contents of D identify where the next record will be stored (as an offset from D_{+1}).

If the contents of D exceed the value "n-1" (n is the length of the FIFO stack) then insertion into

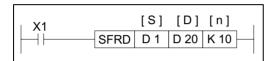
the FIFO stack is stopped. The carry flag M8022 is turned ON to identify this situation.

Points to note:

- a) FIFO is an abbreviation for 'First-In/ First-OUT'.
- b) Although n devices are assigned for the FIFO stack, only n-1 pieces of information may be written to that stack. This is because the head address device (D) takes the first available register to store the information regarding the next data insertion point into the FIFO stack.
- c) Before starting to use a FIFO stack ensure that the contents of the head address register (D) are equal to '0' (zero).
- d) This instruction should be used in conjunction with SFRD FNC 39. The n parameter in both instructions should be equal.

5.4.10 SFRD (FNC 39)

FX1s FX1N FX2N FX2NC


Flags

Zero M8020

Mnemonic Function			Operands			
Millemonie	runction	S	D	n	Program steps	
SFRD FNC 39 (Shift register read) ≁	This instruction reads and reduces FIFO stack- must be used with SFWR FNC 38	KnY, KnM, KnS, T, C, D, KnY, KnM,KnS, T, C, D	KnY, KnM, KnS, T, C, D, KnY, KnM,KnS, T, C, D, V, Z	K,H, ⊠ Note: 2≤ n≤ 512	SFRD, SFRDP: 7 steps	

16 BIT OPERATION

32 BIT OPERATION

[D] [D10]D9]D8]D7]D6]D5]D4]D3]D2]D1] [D20]

Operation:

The source device (S) identifies the head address of the FIFO stack. Its contents reflect the last entry point of data on to the FIFO stack, i.e. where the end of the FIFO is (current position).

PULSE-P

This instruction reads the first piece of data from the FIFO stack (register S_{+1}), moves all of the data within the stack 'up' one position to fill the read area and decrements the contents of the FIFO head address (S) by 1. The read data is written to the destination device (D).

When the contents of the source device (S) are equal to '0' (zero), i.e. the FIFO stack is empty, the flag M8020 is turned ON.

Points to note:

- a) FIFO is an abbreviation for 'First-In/ First-OUT'.
- b) Only n-1 pieces of data may be read from a FIFO stack. This is because the stack requires that the first register, the head address (S) is used to contain information about the current length of the FIFO stack.
- c) This instruction will always read the source data from the register S+1.
- d) This instruction should be used in conjunction with SFWR FNC 38. The n parameter in both instructions should be equal.

Applied Instructions: FX₁s FX1N FX_{2N} FX2NC **Program Flow** 1. 5-4 FNC 00 - 09 2. Move And Compare 5-16 FNC 10 - 19 Arithmetic And Logical Operations $(+, -, \times, \div)$ 3. FNC 20 - 29 5-24 **Rotation And Shift** 4. 5-34 FNC 30 - 39 5. **Data Operation** 5-42 FNC 40 - 49 6. High Speed Processing FNC 50 - 59 5-52 7. Handy Instructions FNC 60 - 69 5-66 External FX I/O Devices 8. FNC 70 - 79 5-80 9. **External FX Serial Devices** FNC 80 - 89 5-94 10. Floating Point 1 & 2 FNC 110-129 5-110 11. Trigonometry (Floating Point 3) FNC 130-139 5-118 12. **Data Operations 2** FNC 140-149 5-122 13. **Positioning Control** FNC 150-159 5-126 14. FNC 160-169 Real Time Clock Control 5-136 **Gray Codes** 15. FNC 170-179 5-146 **Additional Functions** 16. FNC 180-189 5-146 **In-line Comparisons** 17. FNC 220-249 5-150

5.5 Data Operation - Functions 40 to 49

Contents:

			Page
ZRST -	Zone Reset	FNC 40	5-43
DECO -	Decode	FNC 41	5-43
ENCO -	Encode	FNC 42	5-44
SUM -	The Sum Of Active Bits	FNC 43	5-45
BON -	Check Specified Bit Status	FNC 44	5-45
MEAN -	Mean	FNC 45	5-46
ANS -	(Timed) Annunciator Set	FNC 46	5-47
ANR -	Annunciator Reset	FNC 47	5-47
SQR -	Square Root	FNC 48	5-48
FLT -	Float, (Floating Point)	FNC 49	5-49

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D_1 , S_3 or for lists/tabled devices D_{3+0} , S_{+9} etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- ななな An instruction operating in 16 bit mode, where ななな identifies the instruction mnemonic.
- $rac{h}{h}rac{h}{h}P$ A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- □ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

5.5.1 ZRST (FNC 40)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Oper	Operands				
winemonic	Function	S	D	Program steps			
ZRST FNC 40 (Zone Reset)	Used to reset a range of like devices in one operation	Y, M,S, T, C, D Note: D1must be less than or eq Standard and High speed	ual (\leq) to D ₂ . counters cannot be mixed.	ZRST, ZRSTP: 5 steps			

16 BIT OPERATION

32 BIT OPERATION PULSE-P

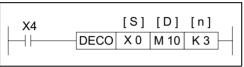
M8002		[D1]	[D2]	.
	ZRST	M 500	M 599	

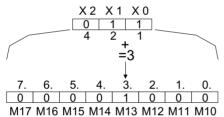
Operation:

The range of devices, inclusive of those specified as the two destinations are reset, i.e. for data devices the current value is set to 0 (zero) and for bit elements, the devices are turned OFF, i.e. also set to 0 (zero).

The specified device range cannot contain mixed device types, i.e. C000 specified as the first destination device (D₁) cannot be paired with T199 as the second destination device (D₂). When resetting counters, standard and high speed counters cannot be reset as part of the same range.

If D₁ is greater than (>) D₂ then only device D₁ is reset.


5.5.2 DECO (FNC 41)


FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands		ands	Program steps
	i unction	S	D	n	r rogram steps
DECO FNC 41 (Decode)	Source data value Q identifies the Qth bit of the destination device which will be turned ON	K, H, X, Y, M,S, T, C, D, V, Z	Y, M, S, T, C, D	K, H, ⊠ Note: D= Y,M,S then n range = 1-8 D= T,C,D then n range = 1-4 n= 0, then no processing	DECO, DECOP: 7 steps

16 BIT OPERATION

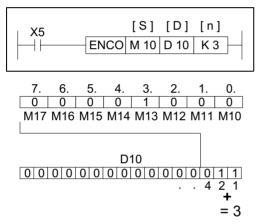
32 BIT OPERATION

Operation:

Source data is provided by a combination of operands S and n. Where S specifies the head address of the data and n, the number of consecutive bits. The source data is read as a single number (binary to decimal conversion) Q. The source number Q is the location of a bit within the destination device (D) which will be turned ON (see example opposite). When the destination device is a data device n must be within the range 1 to 4 as there are only 16 available destination bits in a single data word. All unused data bits within the word are set to 0.

PULSE-P

5.5.3 ENCO (FNC 42)


FX1S | FX1N | FX2N | FX2NC

Mnemonic	Function		Operands				
Milenonie	T unction	S	D	n	Program steps		
ENCO FNC 42 (Encode)	Then location of the highest active bit is stored as a numerical position from the head address	Z		K, H, ⊠ Note: S=X, Y, M, S then n range=1-8 S= T,C,D then n range = 1-4 n = 0, then no processing	ENCO, ENCOP: 7 steps		

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

Operation:

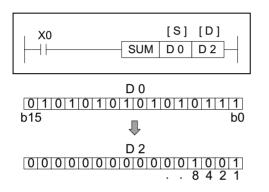
The highest active bit within the readable range has its location noted as a numbered offset from the source head address (S). This is stored in the destination register (D).

Points to note:

- a) The readable range is defined by the largest number storable in a binary format within the number of destination storage bits specified by n, i.e. if n was equal to 4 bits a maximum number within the range 0 to 15 can be written to the destination device. Hence, if bit devices were being used as the source data, 16 bit devices would be used, i.e. the head bit device and 15 further, consecutive devices.
- b) If the stored destination number is 0 (zero) then the source head address bit is ON, i.e. the active bit has a 0 (zero) offset from the head address. However, if NO bits are ON within the source area, 0 (zero) is written to the destination device and an error is generated.
- c) When the source device is a data or word device n must be taken from the range 1 to 4 as there are only 16 source bits available within a single data word.

5.5.4 SUM (FNC 43)

FX1s FX1N FX2N FX2NC


Flags

Zero M8020

Mnemonic	Function	Operands		Program steps
Winchiofile	i unction	S	D	r rogram steps
SUM FNC 43 (Sum of active bits)	The number (quantity) of active bits in the source data is stored in the destination device	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z	KnY, KnM, KnS, T, C, D, V, Z	SUM,SUMP: 7 steps DSUM, DSUMP: 9 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

The number of active (ON) bits within the source device (S), i.e. bits which have a value of "1" are counted. The count is stored in the destination register (D). If a double word format is used, both the source and destination devices use 32 bit, double registers. The destination device will always have its upper 16 bits set to 0 (zero) as the counted value can never be more than 32.

If no bits are ON then zero flag, M8020 is set.

PULSE-P

5.5.5 BON (FNC 44)

FX1s FX1N FX2N FX2NC

Mnemonic	Functio	on		(Oper	ands	Program steps
			S	D		n	r rogram steps
BON FNC 44 (Check specified bit status)	The status of specified bit source devi indicated at destination	in the ce is	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z	Y, M, S		K,H, ⊠ Note: 16 bit operation n=0 to 15 32 bit operation n=0 to 31	BON, BONP: 7steps DBONP, DBON: 13 steps
16 BIT OPERATION 32 BIT OPERA			T OPERATIC	DN		PULSE-P	
X0 [S] [D] [n] BON D 10 M0 K K BON D 10 M0 K K Source device/area (S). n could be regarded as a specified offset from the source head address (S).							
$ \begin{array}{c} $			a □1_0 b0 If	s an off the id	set o enti	being the first device of 15 would actually b fied bit becomes ac device (D) is activate	e the 16th device. tive, i.e. ON, the

[0]0]1]0]1]0]1]0]1]0]1]0]1]0]1]0]1]0] b15 = 0, M0 = 0 status. The destination device could be said to act as a mirror to the status of the selected bit source.

5.5.6 MEAN (FNC 45)

FX1s FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
Winchiofile	Tunction	S	D	n	r rogram steps
MEAN FNC 45 (Mean)	Calculates the mean of a range of devices	KnX, KnY, KnM, KnS, T, C, D	KnY, KnM, KnS, T, C, D, V, Z	K,H, ⊠ Note: n= 1 to 64	MEAN, MEANP: 7 steps DMEAN, DMEANP: 13steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

_ X0		[S]	[D]	[n]	I
	MEAN	D 0	D 10	K 3]

General rule

$$D = \frac{\sum_{n=0}^{S_n} S}{n} = \frac{(S_0 + S_1 + < +S_n)}{n}$$

Example

 $D10=\frac{(D0)+(D1)+(Dn)}{3}$

Operation:

The range of source data is defined by operands S and n. S is the head address of the source data and n specifies the number of consecutive source devices used.

The value of all the devices within the source range is summed and then divided by the number of devices summed, i.e. n. This generates an integer mean value which is stored in the destination device (D). The remainder of the calculated mean is ignored.

Points to note:

If the source area specified is actually smaller than the physically available area, then only the available devices are used. The actual value of n used to calculate the mean will reflect the used, available devices. However, the value for n which was entered into the instruction will still be displayed. This can cause confusion as the mean value calculated manually using this original n value will be different from that which is displayed.

If the value of nis specified outside of the stated range (1 to 64) an error is generated.

5.5.7 ANS (FNC 46)

FX₁s FX1N FX2N FX2NC

Mnemonic	Functio	on		Operands			
Whetheric			S		D	n	Program steps
ANS FNC 46 (Timed annunciator set)	This instruc starts a time Once timed the selected annunciator set ON	er. out d	T Note: available range T0 to T199		nunciator ige S900 to	K ⋈ Note: n range 1 to 32,767 - in units of 100msec	ANS: 7 steps
16 BIT OPER	ATION	32 BI	T OPERATION		PUL	_SE-P	

ANS

X0

+ +

V4	[S] [n] [D]	

Τ0

K 10 S900

Operation:

This instruction, when energized, starts a timer (S) for n,100 msec. When the timer completes its cycle the assigned annunciator (D) is set ON.

If the instruction is switched OFF during or after completion of the timing cycle the timer is automatically reset. However, the current status of the annunciator coil remains unchanged.

Note: This is only one method of driving annunciator coils, others such as direct setting can also be used.

5.5.8 ANR (FNC 47)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands D	Program steps
ANR FNC 47 (Annunciator reset) ≁	The lowest active annunciator is reset on every operation of this instruction	N/A	ANR,ANRP: 1step

16 BIT OPERATION

32 BIT OPERATION

X3	ANR
----	-----

Operation:

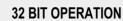
Annunciators which have been activated are sequentially reset one-by-one, each time the ANR instruction is operated.

PULSE-P

If the ANR instruction is driven continuously it will carry out its resetting operation on every program scan unless it is modified by the pulse, P prefix or by a user defined program interlock.

Zero M8020

Borrow M8021


5.5.9 SQR (FNC 48)


FX1S FX1N FX2N FX2NC

Flags

Mnemonic	Function	Oper	Program steps	
Winchiofile	T unction	S	D	r rogram steps
SQR FNC 48 (Square root)	Performs a mathematical square root e.g.: $D=\sqrt{S}$	K,H,D When using M8023 in fl double word (32bit) data See page 4- 46 for more ing point.		SQR, SQRP: 5 steps DSQR, DSQRP: 9 steps

16 BIT OPERATION

Operation 1:

This instruction performs a square root operation on source data (S) and stores the result at destination device (D). The operation is conducted entirely in whole integers rendering the square root answer rounded to the lowest whole number. For example, if (S) = 154, then (D) is calculated as being 12. M8020 is set ON when the square root operation result is equal to zero. Answers with rounded values will activate M8021.

PULSE-P

Operation 2: This function is equivalent to FNC 127 ESQR This operation is similar to Operation 1. However, it is only activated when the mode setting float flag, M8023 is used. This then allows the SQR instruction to process answers in floating point format. The source data (S) must either be supplied in floating point format for data register use, or it can be supplied as a constant (K,H). When constants are used as a source, they are automatically converted to floating point format. Operation 2 is only valid for double word (32 bit) operation, hence both (S) and (D) will be 32 bit values and the SQR instruction will be entered as DSQR or DSQRP.

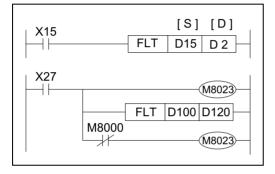
General note:

Performing any square root operation (even on a calculator) on a negative number will result in an error. This will be identified by special M coil M8067 being activated:

 $\sqrt{-168}$ = Error and M8067 will be set ON

This is true for both operating modes.

5.5.10 FLT (FNC 49)


FX1s FX1N FX2N FX2NC

Mnemonic Function		Operands		Program steps
	i unotion	S	D	r rogram stops
FLT FNC 49 (Floating point)	floating point format	D M8023 = OFF data is co to floating point format M8023 = ON data is cor point format to decimal f	nverted from floating	FLT, FLTP: 5 steps DFLT, DFLTP: 9 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

Operation:

When the float instruction is used without the float flag (M8023 = OFF) the source data (S) is converted in to an equivalent value stored in float format at the destination device (D).

Please note that two consecutive devices (D and D_{+1}) will be used to store the converted float number. This is true regardless of the size of the source data (S), i.e. whether (S) is a single device (16 bits) or a double device (32 bits) has no effect on the number of destination devices (D) used to store the floating point number. Examples:

Decimal source data (S)	Floating point destination value (D)
1	1
-26700	-2.67 × 10 ⁴
404	$4.04 imes 10^2$

MEMO

Applied Instructions: FX2N FX₁s FX1N FX2NC **Program Flow** 1. 5-4 FNC 00 - 09 2. Move And Compare 5-16 FNC 10 - 19 Arithmetic And Logical Operations $(+, -, \times, \div)$ 3. FNC 20 - 29 5-24 4. **Rotation And Shift** 5-34 FNC 30 - 39 5. **Data Operation** 5-42 FNC 40 - 49 6. High Speed Processing FNC 50 - 59 5-52 7. Handy Instructions FNC 60 - 69 5-66 External FX I/O Devices 8. FNC 70 - 79 5-80 9. **External FX Serial Devices** FNC 80 - 89 5-94 10. Floating Point 1 & 2 FNC 110-129 5-110 11. Trigonometry (Floating Point 3) FNC 130-139 5-118 12. **Data Operations 2** FNC 140-149 5-122 13. **Positioning Control** FNC 150-159 5-126 14. FNC 160-169 Real Time Clock Control 5-136 **Gray Codes** 15. FNC 170-179 5-146 **Additional Functions** 16. FNC 180-189 5-146 **In-line Comparisons** 17. FNC 220-249 5-150

A MITSUBISHI

Done

5.6 High Speed Processing - Functions 50 to 59

Contents:

			Faye
REF -	Refresh	FNC 50	5-53
REFF -	Refresh and filter adjust	FNC 51	5-53
MTR -	Input matrix	FNC 52	5-54
HSCS -	High speed counter set	FNC 53	5-55
HSCR -	High speed counter reset	FNC 54	5-56
HSZ -	High speed counter		
	zone compare	FNC 55	5-57
SPD -	Speed detect	FNC 56	5-60
PLSY -	Pulse Y output	FNC 57	5-61
PWM -	Pulse width modulation	FNC 58	5-62
PLSR -	Ramp Pulse output	FNC 59	5-63

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

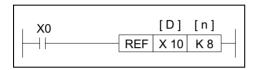
Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D_1 , S_3 or for lists/tabled devices D_{3+0} , S_{+9} etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- ななな An instruction operating in 16 bit mode, where ななな identifies the instruction mnemonic.
- $rac{h}{h}rac{h}{h}P$ A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.



5.6.1 REF (FNC 50)

FX1S FX1N FX2N FX2NC

Mnemonic Function		Operands		Program steps
	Tunction	D	n	r rogram steps
REF FNC 50 (Refresh) ≁	Forces an immediate update of inputs or outputs as specified	X, Y ⊠ Note: D should always be a multiple of 10, i.e. 00, 10, 20, 30 etc.	K, H ⊠ Note: n should always be a multiple of 8, i.e. 8, 16, 24, 32 etc.	REF, REFP: 5 steps

32 BIT OPERATION

Operation:

Standard PLC operation processes output and input status between the END instruction of one program scan and step 0 of the following program scan. If an immediate update of the I/O device status is required

PULSE-P

the REF instruction is used. The REF instruction can only be used to update or refresh blocks of 8 (n) consecutive devices. The head address of the refreshed devices should always have its last digit as a 0 (zero), i.e. in units of 10.

Note: A short delay will occur before the I/O device is physically updated, in the case of inputs a time equivalent to the filter setting, while outputs will delay for their set energized time.

5.6.2 **REFF (FNC 51)**

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps
	i unotion	n	r rogram otopo
REFF FNC 51 (Refresh and filter adjust)	Inputs are refreshed, and their input filters are reset to the newly designated value	K, H, Note: n= 0 to 60 msec (0 = 50μ s) X000 to X007 (X000 to X017 for FX _{2N}) are automatically designated when using this instruction	REFF, REFFP: 3 steps

16 BIT OP	ERATION
-----------	---------

32 BIT OPERATION

X10 [n] REFF K1

Operation:

PLC's are provided with input filters to overcome problems generated by mechanical switch gear. However, as this involves ensuring a steady input signal is received for a fixed time duration, the use of

PULSE-P

input filters slows down the PLC response times. For high speed applications, especially where solid state switching provides the input signal, input filter times may be reduced. The default setting for the input filters is approximately 10 msec. Using this instruction input filter times of 0 to 60 msec may be selected. The setting '0' (zero) is actually 50 μ sec. This is the minimum available setting. It is automatically selected when direct input, interrupts or high speed counting functions are used. The REFF instruction needs to be driven for each program scan if it is to be effective, otherwise, the standard 10 msec filter time is used.

Operation

Complete M8029

Flags

5.6.3 MTR (FNC 52)

FX1s FX1N FX2N FX2NC

MnemonicFunctionMTRMultiplexes aFNC 52bank of inputs(Inputinto a number of sets of devices.Note:	D1 Y X	D2 Y, M, S ⊠	n K, H, ⊠	MTR: 9 steps
FNC 52 bank of inputs (Input into a number of Nate:	Y ⊠			MTR: 9 steps
Can only be used ONCE		•	Note: n=2 to 8	

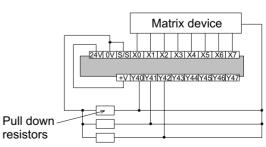
16 BIT OPERATION

Operation:

This instruction allows a selection of 8 consecutive input devices (head address S) to be used multiple (n) times, i.e. each physical input has more than one, separate and quite different (D1) signal being

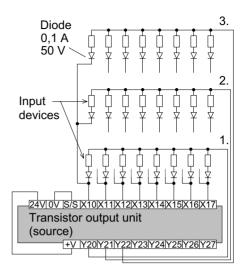
PULSE-P

processed. The result is stored in a matrix-table (head address D₂).


Points to note:

- a) The MTR instruction involves high speed input/output switching. For this reason this instruction is only recommended for use with transistor output modules.
- b) For the MTR instruction to operate correctly, it must be driven continuously. It is recommended that special auxiliary relay M8000, the PLC RUN status flag, is used. After the completion of the first full reading of the matrix, operation complete flag M8029 is turned ON. This flag is automatically reset when the MTR instruction is turned OFF.
- c) Each set of 8 input signals are grouped into a 'bank' (there are n number of banks).
- d) Each bank is triggered/selected by a dedicated output (head address D1). This means the quantity of outputs from D1, used to achieve the matrix are equal to the number of banks n. As there are now additional inputs entering the PLC these will each have a status which needs recording. This is stored in a matrix-table. The matrix-table starts at the head address D2. The matrix construction mimics the same 8 signal by n bank configuration. Hence, when a certain input in a selected bank is read, its status is stored in an equivalent position within the result matrix-table.
- e) The matrix instruction operates on an interrupt format, processing each bank of inputs every 20msec. This time is based on the selected input filters being set at 10msec. This would result in an 8 bank matrix, i.e. 64 inputs (8 inputs' 8 banks) being read in 160msec.

If high speed inputs (ex. X0) is specified for operand S, the reading time of each bank


becomes only 10msec, i.e. a halving of the reading speed. However, additional pull down resistors are required on the drive outputs to ensure the high speed reading does not detect any residual currents from the last operation. These should be placed in parallel to the input bank and should be of a value of approximately $3.3k\Omega$, 0.5W. For easier use, high speed inputs should not be specified at S.

f) Because this instruction uses a series of multiplexed signals it requires a certain amount of 'hard wiring' to operate. The example wiring diagram to the right depicts the circuit used if the previous example instruction was programmed. As a general precaution to aid successful operation diodes should be places after each input device (see diagram opposite). These should have a rating of 0.1A, 50V.

g) Example Operation

When output Y20 is ON only those inputs in the first bank are read. These results are then stored; in this example, auxiliary coils M30 to M37. The second step involves Y20 going OFF and Y21 coming ON. This time only inputs in the second bank are read. These results are stored in devices M40 to M47. The last step of this example has Y21

going OFF and Y22 coming ON. This then allows all of the inputs in the third bank to be read and stored in devices M50 to M57. The processing of this instruction example would take $20 \times 3 = 60$ msec.

Notice how the resulting matrix-table does not use any of the 328 and 329 bit devices when state S or auxiliary M relays are used as the storage medium.

5.6.4 HSCS (FNC 53)

FX1s FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
Winchiofile	T direction	S 1	S2	n	r rogram steps
HSCS FNC 53 (High speed counter set)	Sets the selected output when the specified high speed counter value equals the test value	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z	C Note: C = 235 to 254, or available high speed counters	Y, M, S Interrupt point- ers I010 to I060 can be set.	DHSCS: 13 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

[S1][S2][D] M8000 DHSCS K100 C255 Y10 ++

Operation:

The HSCS set, compares the current value of the selected high speed counter (S₂)against a selected value (S₁). When the counters current value changes to a value equal to S₁the device specified

as the destination (D) is set ON. The example above shows that Y10 would be set ON only when C255's value stepped from 99-100 OR 101-100. If the counters current value was forced to equal 100, output Y10 would **NOT** be set ON.

Points to note:

- a) It is recommended that the drive input used for the high speed counter functions; HSCS, HSCR, HSCZ is the special auxiliary RUN contact M8000.
- b) If more than one high speed counter function is used for a single counter the selected flag devices (D) should be kept within 1 group of 8 devices, i.e. Y0-7, M10-17.
- c) All high speed counter functions use an interrupt process, hence, all destination devices (D) are updated immediately.

Note:

For all units Max. 6 simultaneously active HSCS/R and HSZ instructions. Please remember that the use of high speed counter functions has a direct impact on the maximum allowable counting speed! See page 4-22 for further details.

Use of interrupt pointers

FX1s FX1N FX2N FX2NC

FX_{2N} and FX_{2NC} MPUs can use interrupt pointers I010 through I060 (6 points) as destination devices (D). This enables interrupt routines to be triggered directly when the value of the specified high speed counter reaches the value in the HSCS instruction.

5.6.5 HSCR (FNC 54)

FX1s FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
Whichiofic	T direction	S 1	S2	D	
HSCR	Resets the	К, Н,	С	Y, M, S	DHSCR:
FNC 54	selected output	KnX, KnY,	Note:	С	13 steps
(High speed	when the	KnM, KnS,	C = C235 to	Note:	
counter	specified high	T, C, D, V, Z	C255, or	If C, use same	
reset)	speed counter		available high	counter as S ₂	
	equals the test		speed		
	value		counters		

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

PULS

M8000		[S1]	[S2]	[D]	I
	DHSCR	K200	C255	Y10	

Operation:

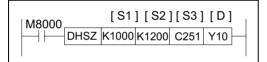
The HSCR, compares the current value of the selected high speed counter (S_2) against a selected value (S_1) . When the counters current value changes to a value equal to S_1 , the device

specified as the destination (D) is reset. In the example above, Y10 would be reset only when C255's value stepped from 199 to 200 or from 201 to 200. If the current value of C255 was forced to equal 200 by test techniques, output Y10 would **NOT** reset.

For further, general points, about using high speed counter functions, please see the subsection 'Points to note' under the HSCS (FNC 53). Relevant points are; a, b, and c. Please also reference the note about the number of high speed instructions allowable.

5.6.6 HSZ (FNC 55)

FX1S FX1N FX2N FX2NC


Mnemonic	Function			Operands		Program steps
Witternottic	T unction	S 1	S2	S 3	D	r rogram steps
HSZ FNC 55 (High speed zone compare)	Operation 1: The current value of a high speed counter is checked against a specified range	K, H, KnX, K KnM, K T, C, D	ínŚ,	C Note: C = 235 to 255,	Y, M, S Note: 3 consecutive devices are used	DHSZ: 17 steps
	Operation 2: The designated range is held in a data table driving 'Y' outputs directly	D	K,H Using values from 1 to 128		M8130 (only) This flag can only be used with one DHSZ instr' at a time	
	Operation 3: The designated range is held in a data table driving PLSY frequencies directly using D8132		(deci- mal)		M8132 (only) This flag can only be used with one	

16 BIT OPERATION

(D)

32 BIT OPERATION

PULSE-P

Operation 1 - Standard: (Applicable to all units) This instruction works in exactly the same way as the standard ZCP (FNC11). The only difference is that the device being compared is a high speed counter (specified as S₃).

Also, all of the outputs (D) are updated immediately due to the interrupt operation of the DHSZ. It should be remembered that when a device is specified in operand D it is in fact a head address for 3 consecutive devices. Each one is used to represent the status of the current comparison, i.e. using the above example as a basis,

Y11	
Y12	

Y10

C251 is less than S1, K1000 (S3< S1)

 (D_{+1}) C251 is greater than S1, K1000 but less than S2, K1200 (S3> S1, S3< S2)

(D+2) C251 is greater than S2, K1200 (S3> S2)

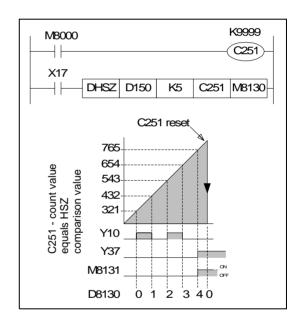
For further, general points, about using high speed counter functions please see the subsection 'Points to note' under the HSCS (FNC 52). Relevant points are; a, b, and c. Please also reference the note about the number of high speed instructions allowable.

Operation 2 - Using HSZ With A Data Table: (Applicable units: FX2N and FX2NC)

Operation 2 is selected when the destination device (D) is assigned special M coil M8130. This then allows devices (S₁, S₂) to be used to define a data table using (S₁) as the head address and (S₂) as the number of records in the table - maximum number of records is 128. Each record occupies 4 consecutive data registers proportioned in the following manner (for a single record of data registers D through D_{+3}):

		Single Record							
	D, D+1 Used as a double (32 bit) data register to contain the comparison data								
Data registers	D+2	Stores the I/O device number, in HEX, of the 'Y' Output device to be controlled, i.e. H10=Y10. Note: Hex digits A through F are not used.							
	D+3	Stores the action (SET/RESET) to be performed on the Output device D+2. Note: For a SET (ON) operation D+3 must equal 1, for a RESET (OFF) D+3 must equal 0.							

The following points should be read while studying the example on the right of the page. Please note, all normal rules associated with high speed counters still apply.


The data table is processed one 'record number' at a time, i.e only 1 record is ever active as the comparison data. The currently active record number is stored in data register D8130. As the comparison value for the active record is 'reached', the assigned 'Y' device is SET or RESET and the active 'Record number' is incremented by 1. Once all records in a data table have been processed, the current record pointer (D8130) is reset to 0 (the table is then ready to process again) and the operation complete flag M8131 is set ON.

If the high speed counter is reset (by program
or hardware input), when it resumes counting
and reaches the first record's comparison value,
the M8131 flag will be reset. Both the status of
M8131 and contents of D8130 are not editable
by the user. If the DHSZ instruction is turned
OFF then all associated flags are reset.

Care should be exercised when resetting the high speed counter or turning OFF the DHSZ instruct as all associated 'Y' output devices will remain in their last state, i.e. if an output was ON it will remain ON until independently reset by the user.

The data within inactive records can be changed during operation allowing data tables to be updated. Any change made is processed at the end of the current program scan. The HSZ instruction will continue to process only the active data record, i.e. it will not reset due to the updating of an inactive data record.

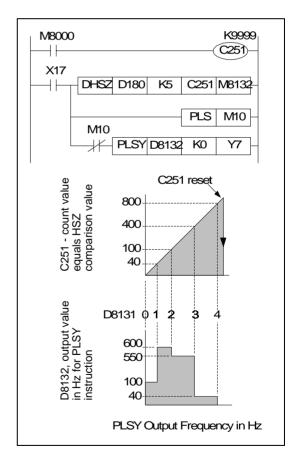
Record number	Comparison value (lower/upper register)	Selected 'Y' Output Device	SET/RESET 'Y'Device (1=SET, 0=RESET)
[D8130]	[D, D+1]	[D+2]	[D+3]
0	[D150, D151]	[D152]	[D153]
	K321	H10 (Y10)	K1
1	[D154, D155]	[D156]	[D157]
	K432	H10 (Y10)	K0
2	[D158, D159]	[D160]	[D161]
	K543	H10 (Y10)	K1
3	[D162, D163]	[D164]	[D165]
	K765	H10 (Y10)	K0
4	[D166, D167]	[D168]	[D169]
	K765	H37 (Y37)	K1

When the DHSZ instruction is initially activated it will not process a comparison until the following program scan as the CPU requires a slight time delay to initialize the comparison table.

Operation 3 - Combined HSZ and PLSY Operation: (Applicable units: FX_{2N} and FX_{2NC}) Operation 3 allows the HSZ and PLSY instructions to be used together as a control loop. This operation is selected when the destination device (D) is assigned special M coil M8132. This then allows devices (S₁, S₂) to be used to define a data table using (S₁) as the head address and (S₂) as the number of records in the table - maximum number of records is 128. Each record occupies 4 consecutive data registers (D through D₊₃) proportioned in to two 32 bit data areas.

The first pair of data registers (D,D+1) contain the comparison value for use with the high speed counter. The second pair of data registers (D+2,D+3) contain a value (from 0 to 1000) which represents an output frequency in Hz. This value is loaded in to special data register D8132 when the comparison made by the DHSZ instruction gives a 'TRUE' output.

Special data register D8132 can be used as the source data for a PLSY (FNC57) output enabling the output to be varied with relative count data.

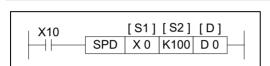

As with Operation 2 only one record in the data table is active at any one time. The current 'Record number' being processed is stored in data register D8131. To observe the current comparative value, data registers D8134 and D8135 should be monitored as a double word (32 bit) device.

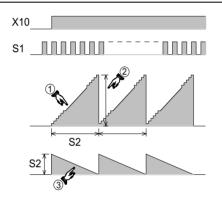
Once the final entry in the data table has been processed, the operation complete flag M8133 is set ON and the record counter (D8131) cycles back to the first record.

It is recommended that if the high speed counter and PLSY operations form a closed loop that the last record entry in the data table is set to K0 for the comparison value and K0 for the PLSY output frequency. This will bring the controlled system to a stop and the 'Record number' counter will not be able to cycle back to the start of the data table until the associated high speed counter is reset by either pro-gram or hardware methods. This situation can be easily monitored by checking the paired data registers D8134 and D8135 for the '0' value.

It is recommended that the operation of the PLSY instruction is delayed for 1 scan to allow the DHSZ data table to be constructed on initial operation. A suggested program using a pulsed flag is shown in the example on this page.

Record number [D8131]	Comparison value (lower/upper register) [D, D+1]	Output Frequency For PLSY Instruction [D+2, D+3]
0	[D180, D181] K40	[D182, D183] K100
1	[D184, D185] K100	[D186, D187] K600
2	[D188, D189] K400	[D190, D191] K550
3	[D192, D193] K800	[D194, D195] K40
4	[D196, D197] K0	[D198, D199] K0


5.6.7 SPD (FNC 56)


FX1s FX1N FX2N FX2NC

Mnemonic	Function		Oper	Program steps	
WITEINOINC	i unction	S 1	S 2	D	Frogram steps
SPD FNC 56 (Speed detection)	Detects the number of 'encoder' pulses in a given time frame. Results can be used to calculate speed	X0 to X5		T, C, D, Z (V) Note: 3 consecutive devices are used. In the case of D= Z monitor D8028, D8029 and D8030	SPD: 7 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

The number of pulses received at S1 are counted and stored in D+1; this is the current count value. The counting takes place over a set time frame specified by S2 in msec. The time remaining on the current 'timed count', is displayed in device D+2. The number of counted pulses (of S1) from the last timed count are stored in D. The timing chart opposite shows the SPD operation in a graphical sense. Note:

1: Current count value, device D+1

PULSE-P

2: Accumulated/ last count value, device D

3: Current time remaining in msec, device D+2

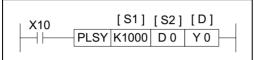
Points to note:

- a) When the timed count frame is completed the data stored in D+1 is immediately written to D. D+1 is then reset and a new time frame is started.
- b) Because this is both a high speed and an interrupt process only inputs X0 to X5 may be used as the source device S1. However, the specified device for S1 must **NOT** coincide with any other high speed function which is operating, i.e. a high speed counter using the same input. The SPD instruction is considered to act as a single phase counter.
- c) Multiple SPD instructions may be used, but the identified source devices S1 restrict this to a maximum of 6 times.
- d) Once values for timed counts have been collected, appropriate speeds can be calculated using simple mathematics. These speeds could be radial speeds in rpm, linear speeds in M/ min it is entirely down to the mathematical manipulation placed on the SPD results. The following interpretations could be used;

Linear speed N (km/h) =
$$\frac{3600 \times (D)}{n \times S_2} \times 10^3$$

where n = the number of linear encoder divisions per kilometer.

Radial speed N (rpm) =
$$\frac{60 \times (D)}{n \times S_2} \times 10^3$$


where n = the number of encoder pulses per revolution of the encoder disk.

5.6.8 PLSY (FNC 57)

FX1S FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
Witemonic	runction	S 1	S 2	D	r rogram steps
PLSY FNC 57 (Pulse Y output)	Outputs a specified number of pulses at a set frequency	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z		Y Note: Y000 or Y001 only ⊠.	PLSY: 7 steps DPLSY: 13steps

16 BIT OPERATION	32 BIT OPERATION	PULSE-P	Flags	Operation Complete M8029

Operation:

A specified quantity of pulses S₂ is output through device D at a specified frequency S₁. This instruction is used in situations where the quantity of outputs is of primary concern.

Points to note:

- a) FX1s/FX1N users may use frequencies of 1 to 132,767Hz (16-bit operation) and 1 to 100kHz (32-bit operation). FX2N/FX2Nc users may use frequencies of 2 to 20kHz.
- b) The maximum number of pulses: 16 bit operation: 1 to 32,767 pulses, 32 bit operation: 1 to 2,147,483,647 pulses.
 Note: special auxiliary coil M8029 is turned ON when the specified number of pulses has been completed. The pulse count and completion flag (M8029) are reset when the PLSY

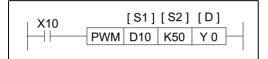
been completed. The pulse count and completion flag (M8029) are reset when the PLSY instruction is de-energized. If "0" (zero) is specified the PLSY instruction will continue generating pulses for as long as the instruction is energized.

- c) A single pulse is described as having a 50% duty cycle. This means it is ON for 50% of the pulse and consequently OFF for the remaining 50% of the pulse. The actual output is controlled by interrupt handling, i.e. the output cycle is NOT affected by the scan time of the program.
- d) The data in operands S1 and S2 may be changed during execution. However, the new data in S2 will not become effective until the current operation has been completed, i.e. the instruction has been reset by removal of the drive contact.
- e) Two FNC 57 (PLSY) can be used at the same time in a program to output pulses to Y000 and Y001 respectively. Or, only one FNC 57 PLSY and one FNC 59 PLSR can be used together in the active program at once, again outputting independent pulses to Y000 and Y001.

It is possible to use subroutines or other such programming techniques to isolate different instances of this instructions. In this case, the current instruction must be deactivated before changing to the new instance.

- f) Because of the nature of the high speed output, transistor output units should be used with this instruction. Relay outputs will suffer from a greatly reduced life and will cause false outputs to occur due to the mechanical 'bounce' of the contacts. To ensure a 'clean' output signal when using transistor units, the load current should be 200mA or higher with the FX2N Series. The load current should be 10 - 100mA with the FX1S/1N Series. It may be found that 'pull up' resistors will be required.
- g) FX_{2N} and FX_{2NC} units can use the HSZ (FNC 55) instruction with the PLSY instruction when source device S₁ is set to D8132. Please see page 5-59 for more details.
- h) FX_{2N} and FX_{2NC} units can monitor the number of pulses output to Y0 using devices D8140 and D8141, and the number of output pulses output to Y1 using devices D8142 and D8143. The total number of pulses output can be monitored using D8136 and D8137.

5.6.9 PWM (FNC 58)


FX1S FX1N FX2N FX2NC

Mnemonic	Function		Program steps			
Witemonic Function		S 1	S2	D	Frogram steps	
PWM FNC 58 (Pulse width modulation)	Generates a pulse train with defined pulse characteristics	K, H, KnX, KnY, H KnS, T, C, D, V, Z Note: S1 S2	·	Y Note: All units: Y000 or Y001 only ⊠	PWM: 7 steps	

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

Operation:

A continuous pulse train is output through device D when this instruction is driven. The characteristics of the pulse are defined as:

The distance, in time (msec), between two identical parts of consecutive pulses (S₂).

And how long, also in time (msec), a single pulse will be active for (S_1) .

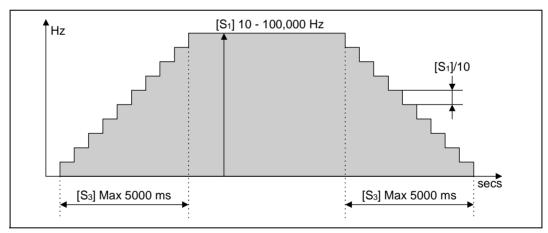
Points to note:

- a) Because this is a 16 bit instruction, the available time ranges for S1 and S2 are 1 to 32,767.
- b) A calculation of the duty cycle is easily made by dividing S1 by S2. Hence S1 cannot have a value greater than S2 as this would mean the pulse is on for longer than the distance between two pulses, i.e. a second pulse would start before the first had finished. If this is programmed an error will occur.

This instruction is used where the length of the pulse is the primary concern.

- c) The PWM instruction may only be used once in a users program.
- d) Because of the nature of the high speed output, transistor output units should be used with this instruction. Relay outputs will suffer from a greatly reduced life and will cause false outputs to occur due to the mechanical 'bounce' of the contacts. To ensure a 'clean' output signal when using transistor units, the load current should be 200mA or higher with the FX2N Series. The load current should be 10 - 100mA with the FX1S/1N Series. It may be found that 'pull up' resistors will be required.

5.6.10 PLSR (FNC 59)


FX1s FX1N FX2N FX2NC

16 BIT OPERATION 32 BI		BIT OPERATION			PULSE-P	Flags	Operation Complete M8029	
Mnemonic	nemonic Function		Opera			rands Program		Iram steps
PLSR FNC 59 (Pulse ramp)	Outputs a specified nu of pulses, ramping up set frequen back down	to a cy and	K, H,	nY, KnM,		Y FX _{2N} users: Y000 or Y001 only.	PLSR 9 step DPLS 17 ste	s R:

Operation:

A specified quantity of pulses S₂ is output through device D. The output frequency is first ramped up in 10 steps to the maximum frequency S₁ in acceleration time S₃ ms, then ramped down to stop also in S₃ ms. This instruction is used to generate simple acc/dec curves where the quantity of outputs is of primary concern.

Points to Note:

a) FX_{2N}/FX_{2NC} users may use frequencies of 10 to 20,000Hz. FX_{1S}/FX_{1N} users may use frequencies of 10 to 100,000Hz. The frequency should be set to a multiple of 10. If not it will be rounded up to the next multiple of 10.

The acceleration and deceleration steps are set to 1/10 of the maximum frequency. Take this in to consideration to prevent slipping, when using stepping motors.

b) FX_{2N} and FX_{2NC} units with CPU of less than V3.00 and all FX_{1S}, FX_{1N} units, maximum number of pulses: 16 bit operation: 110 to 32,767 pulses,

32 bit operation: 110 to 2,147,483,647 pulses.

Correct pulse output can not be guaranteed for a setting of 110 or less.

FX2N and FX2NC units with CPU of V3.00 or greater,

maximum number of pulses: 16 bit operation: 0 to 32,767 pulses,

32 bit operation: 0 to 2,147,483,647 pulses.

A setting of 110 pulses or less, or a frequency of $[S_1]/10$ will result in no acceleration.

- c) The acceleration time must conform to the limitations described below.
- d) The output device is limited to Y000 or Y001 only and should be transistor type.
- e) Two FNC 59 (PLSR) can be used at the same time in a program to output pulses to Y000 and Y001 respectively. Or, only one FNC 57 PLSY and one FNC 59 PLSR can be used together in the active program at once, again outputting independent pulses to Y000 and Y001.

It is possible to use subroutines or other such programming techniques to isolate different instances of this instructions. In this case, the current instruction must be deactivated before changing to the new instance.

- f) If the number of pulses is not enough to reach the maximum frequency then the frequency is automatically cut
- g) Special auxiliary coil M8029 turns ON when the specified number of pulses has been completed. The pulse count and completion flag (M8029) are reset when the PLSR instruction is de-energized.

Acceleration time limitations

The acceleration time S₃ has a maximum limit of 5000 ms. However, the actual limits of S₃ are determined by other parameters of the system according to the following 4 points.

 Set S3 to be more than 10 times the maximum program scan time (D8012). If set to less than this, then the timing of the acceleration steps becomes uneven.

$$S_3 \geq \frac{90000}{S_1} \times 5$$

- 2) The following formula gives the minimum value for S3.
- 3) The following formula gives the maximum value for S3.

$$S_3 \leq \frac{S_2}{S_1} \times 818$$

4) The pulse output always increments in 10 step up to the maximum frequency as shown on the previous page.

If the parameters do not meet the above conditions, reduce the size of S1.

- Possible output frequency is limited to 2 to 20,000 Hz for FX2N/FX2Nc, and 10 to 100,000Hz for FX1s/FX1N. If either the maximum frequency or the acceleration step size are outside this limit then they are automatically adjusted to bring the value back to the limit.
- If the drive signal is switch off, all output stops. When driven ON again, the process starts from the beginning.
- Even if the operands are changed during operation, the output profile does not change. The new values take effect from the next operation.

Applied Instructions: FX₁s FX1N FX_{2N} FX2NC **Program Flow** 1. 5-4 FNC 00 - 09 2. Move And Compare 5-16 FNC 10 - 19 Arithmetic And Logical Operations $(+, -, \times, \div)$ 3. FNC 20 - 29 5-24 **Rotation And Shift** 4. 5-34 FNC 30 - 39 **Data Operation** 5. 5-42 FNC 40 - 49 6. High Speed Processing FNC 50 - 59 5-52 7. Handy Instructions FNC 60 - 69 5-66 External FX I/O Devices 8. FNC 70 - 79 5-80 9. **External FX Serial Devices** FNC 80 - 89 5-94 10. Floating Point 1 & 2 FNC 110-129 5-110 11. Trigonometry (Floating Point 3) FNC 130-139 5-118 12. **Data Operations 2** FNC 140-149 5-122 13. **Positioning Control** FNC 150-159 5-126 14. FNC 160-169 Real Time Clock Control 5-136 **Gray Codes** 15. FNC 170-179 5-146 **Additional Functions** 16. FNC 180-189 5-146 In-line Comparisons 17. FNC 220-249 5-150

Done

5.7 Handy Instructions - Functions 60 to 69

Contents:

			Faye
IST -	Initial State	FNC 60	5-67
SER -	Search	FNC 61	5-69
ABSD -	Absolute Drum	FNC 62	5-70
INCD -	Incremental Drum	FNC 63	5-71
TTMR -	Teaching Timer	FNC 64	5-72
STMR -	Special Timer - Definable	FNC 65	5-72
ALT -	Alternate State	FNC 66	5-73
RAMP -	Ramp - Variable Value	FNC 67	5-73
ROTC -	Rotary Table Control	FNC 68	5-75
SORT -	Sort Data	FNC 69	5-77

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D_1 , S_3 or for lists/tabled devices D_{3+0} , S_{+9} etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- ななな An instruction operating in 16 bit mode, where ななな identifies the instruction mnemonic.
- $rac{h}{h}rac{h}{h}P$ A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

5.7.1 IST (FNC 60)

FX1s FX1N FX2N FX2NC

Mnemonic Function		Ор	Program steps		
	i unotion	S 1	S2	S 3	r rogram stops
IST	Automatically sets	X, Y, M, S,	S,		IST:
FNC 60	up a multi-mode	Note:	Note:		7 steps
(Initial state)	STL operating	uses 8	FX ₀ users S2	20 to S63	
	system	consecutive devices	FX0N users	S20 to S127	
			FX users S2	0 to S899	
			D1must be lo	ower than D2	

16 BIT OPERATION

32 BIT OPERATION

Operation:

This instruction automatically sets up a multi-mode STL operating system. This consists of variations of 'manual' and 'automatic' operation modes.

Points to note:

- a) The IST instruction automatically assigns and uses many bit flags and word devices; these are listed in the boxed column on the right of this page.
- b) The IST instruction may only be used **ONCE**.

It should be programmed close to the beginning of the program, before the controlled STL circuits.

c) The required operation mode is selected by driving the devices associated with operands

S+0 through to S+4 (5 inputs). None of the devices within this range should be ON at the same time. It is recommended that these 'inputs' are selected through use of a rotary switch.

If the currently selected operating mode is changed before the 'zero return complete' flag (M8043) is set, all outputs will be turned OFF.

d) The 'zero position' is a term used to identify a datum position from where the controlled device, starts from and returns too after it has completed its task. Hence, the operating mode 'zero return', causes the controlled system to return to this datum.

Assigned devices

Indirect user selected devices:

- S+0 Manual operation
- S+1 Zero return
- S+2 Step operation
- S+3 One cycle operation

PULSE-P

- S+4 Cyclic operation
- S+5 Zero return start
- S+6 Automatic operation start
- S+7 Stop

Initial states:

S0 initiates 'manual' operation S1 initiates 'zero return' operation S2 initiates 'automatic' operation

General states:

S10 to S19 'zero return' sequence D1 to D2 'automatic return' sequence

Special bit flags:

- M8040 = ON STL state transfer is inhibited M8041 = ON initial states are enabled M8042 = Start pulse given by start input
- M8043 = ON zero return completed
- M8043 = ON zero return completed M8044 = ON machine zero detected
- M8047 = ON STL monitor enabled

The 'zero' position is sometimes also referred to as a home position, safe position, neutral position or a datum position.

e) The available operating modes are split into two main groups, manual and automatic. There are sub-modes to these groups. Their operation is defined as:

Manual

Manual (selected by device S+0)- Power supply to individual loads is turned ON and OFF by using a separately provided means, often additional push buttons.

Zero Return (selected by device S+1) -Actuators are returned to their initial positions when the Zero input (S+5) is given.

Automatic

One Step (selected by device S+2)- The controlled sequence operates automatically but will only proceed to each new step when the start input (S+6) is given.

One Cycle (selected by device S+3) - The controlled actuators are operated for **one** operation cycle. After the cycle has been completed, the actuators stop at their 'zero' positions. The cycle is started after a 'start' input (S+6) has been given.

A cycle which is currently being processed can be stopped at any time by activating the 'stop' input (S+7). To restart the sequence from the currently 'paused' position the start input must be given once more.

Automatic (selected by device S+4)-Fully automatic operation is possible in this mode. The programmed cycle is executed repeatedly when the 'start' input (S+6) is given. The currently operating cycle will not stop immediately when the 'stop' input (S+7) is given.

The current operation will proceed to then end of the current cycle and then stop its operation.

Note: Start, stop and zero inputs are often given by additional, manually operated push buttons.

Please note that the 'stop' input is only a program stop signal. It **cannot** be used as a replacement for an 'Emergency stop' push button. All safety, 'Emergency stop' devices should be hardwired systems which will effectively isolate the machine from operation and external power supplies. Please refer to local and national standards for applicable safety practices.

5.7.2 SER (FNC 61)

FX1S FX1N FX2N FX2NC

Mnemonic	Function		Program steps			
Willemonic	Tunction	S1	S2	D	n	r rogram steps
SER FNC 61 (Search a Data Stack)	Generates a list of statistics about a single data value located/found in a data stack	KnX, KnY, KnM, KnS, T, C, D	KnX, KnY, KnM, KnS, T, C, D V, Z K, H	KnY, KnM, KnS T, C, D Note: 5 consecutive devices are used	K,H, D Mote: n= 1~256 for 16 bit operation n= 1~128 for 32 bit operation	SER, SERP: 9 steps DSER, DSERP: 17 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

The SER instruction searches a defined data stack from head address S1, with a stack length n. The data searched for is specified in parameter S2 and the results of the search are stored at destination device D for 5 consecutive devices.

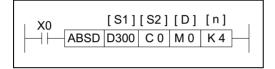
PULSE-P

Destination device	Device description					
D	Total number of occurrences of the searched value S2 (0 if no occurrences are found)					
D+1	The position (within the searched data stack) of the first occurrence of the searched value S2					
D+2	The position (within the searched data stack) of the last occurrence of the searched value S2					
D+3	The position (within the searched data stack) of the smallest value found in the data stack (last occurrence is returned if there are multiple occurrences of the same value)					
D+4	The position (within the searched data stack) of the largest value found in the data stack (last occurrence is returned if there are multiple occurrences of the same value)					

Points to note:

- a) Normal rules of algebra are used to determine the largest and smallest values, i.e. -30 is smaller than 6 etc.
- b) If no occurrence of the searched data can be found then destination devices D, D+1 and D+2 will equal 0 (zero).
- c) When using data register s as the destination device D please remember that 16 bit operation will occupy 5 consecutive, data registers but 32 bit operation will occupy 10 data registers in pairs forming 5 double words.
- d) When multiple bit devices are used to store the result (regardless of 16 or 32 bit operation), only the specified size of group is written to for 5 consecutive occurrences, i.e. K1Y0 would occupy 20 bit devices from Y0 (K1 = 4 bit devices and there will be 5 groups for the 5 results). As the maximum data stack is 256 (0 to 255) entries long, the optimum group of bit devices required is K2, i.e. 8 bit devices.

5.7.3 ABSD (FNC 62)


FX1S | FX1N | FX2N | FX2NC

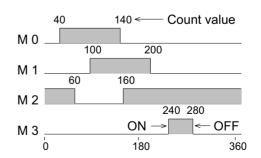
Mnemonic	Function		Program steps			
Witternottic	T unction	S 1	S2	D	n	Trogram steps
ABSD FNC 62 (Absolute drum sequencer)	Generates multiple output patterns in response to counter data	KnX, KnY, KnM, KnS, (in groups of 8) T, C, D	С	Y,M,S Note: n consecutive	K,H ⊠ Note: n≤ 64	ABSD: 9 steps DABSD: 17 steps.
		Note: High spo counters are r allowed		devices are used		see f).

16 BIT OPERATION

32 BIT OPERATION

N PULSE-P

Operation:


This instruction generates a variety of output patterns (there are n number of addressed outputs) in response to the current value of a selected counter, S2.

Points to note:

- a) The current value of the selected counter (S2) is compared against a user defined data table. This data table has a head address identified by operand S1. S1should always have an even device number.
- b) For each destination bit (D) there are two consecutive values stored in the data table. The first allocated value represents the event number when the destination device (D) will be turned ON. The second identifies the reset event. The data table values are allocated as a consecutive pair for each sequential element between D and D+n.
- c) The data table has a length equal to 2 × n data entries. Depending on the format of the data table, a single entry can be one data word such as D300 or a group of 16 bit devices e.g. K4X000.
- d) Values from 0 to 32,767 may be used in the data table.
- e) The ABSD instruction may only be used ONCE.

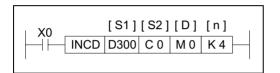
From the example instruction and the data table below, the following timing diagram for elements M0 to M3 can be constructed.

value below	ter S2 equals the v, the destination vice D is	Assigned destination device D
turned ON	turned OFF	device D
D300 - 40	D301 - 140	MO
D302 - 100	D303 - 200	M1
D304 - 160	D305 - 60	M2
D306 - 240	D307 - 280	MB

Operation

Complete M8029

Flags


5.7.4 INCD (FNC 63)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands				Program steps
Willemonic	runction	S 1	S 2	D	n	r rogram steps
INCD FNC 63 (Incremental drum sequencer)	Generates a single output sequence in response to counter data	KnX, KnY, KnM, KnS, (in groups of 8) T, C, D	C Uses 2 consecu- tive counters	Y, M, SK,HNote: \bowtie n consec- utiveNote: $n \le 64$		INCD: 9 steps
		Note: High sp counters are		devices are used		

16 BIT OPERATION

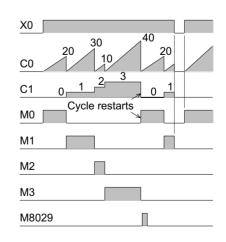
32 BIT OPERATION

Operation:

This instruction generates a sequence of sequential output patterns (there are n number of addressed outputs) in response to the current value of a pair of selected counters (S2, S2+1).

PULSE-P

Points to note:

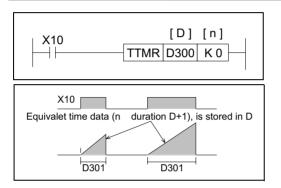

- a) This instruction uses a 'data table' which contains a single list of values which are to be selected and compared by two consecutive counters (S2and S2+1). The data table is identified as having a head address S1and consists of n data elements.
- b) Counter S2 is programmed in a conventional way. The set value for counter S2 MUST be greater than any of the values entered into the data table. Counter S2 counts a user event and compares this to the value of the currently selected data element from the data table. When the counter and data value are equal, S2 increments the count of counter S2+1and resets its own current value to '0' (zero).

This new value of counter S2+1selects the new data element from the data table and counter S2now compares against the new data elements value.

- c) The counter S2+1 may have values from 0 to n. Once the nth data element has been processed, the operation complete flag M8029 is turned ON. This then automatically resets counter S2+1hence, the cycle starts again with data element S1+0.
- d) Values from 0 to 32,767 may be used in the data table.
- e) The INCD instruction may only be used ONCE in a program.

From the example instruction and the data table identified left, the following timing diagram for elements M0 to M3 can be constructed.

	Data table					
Data element	Data value / count value for counter S2	counter S2+1				
D300	20	0				
D301	30	1				
D302	10	2				
D303	40	3				


5.7.5 TTMR (FNC 64)

FX1s FX1N FX2N FX2NC

Mnemonic Function		Oper	Program steps	
Millenionie	T direction	D	n	r rogram steps
TTMR FNC 64 (Teaching timer)	the timed data	D Note: 2 devices 16 bit words are used D and D+1	K, H Mote: $n=0: (D) = (D_{+1}) \times 1$ $n=1: (D) = (D_{+1}) \times 10$ $n=2: (D) = (D_{+1}) \times 100$	TTMR: 5 steps

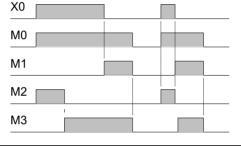
16 BIT OPERATION

32 BIT OPERATION

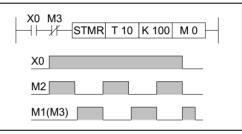
Operation:

The duration of time that the TTMR instruction is energized, is measured and stored in device D_{+1} (as a count of 100ms periods).

PULSE-P


The data value of D_{+1} (in secs), multiplied by the factor selected by the operand n, is moved in to register D. The contents of D could be used as the source data for an indirect timer setting or even as raw data for manipulation.

When the TTMR instruction is de-energized D+1 is automatically reset (D is unchanged).


STMR (FNC 65) 5.7.6

FX1N FX2N FX2NC FX1s

Mnemonic	Mnemonic Function			Operands				
			S		n	D	Program steps	
STMR FNC 65 (Special timer)	Provides dedicated off-delay, on shot and flas timers	e sh	T Note: Timers 0 to 199 (100msec devices)	K, H Note: n= 1 to 32,767		Y, M, S Note:uses 4 consecutive devices D+0to D+3	STMR: 7 steps	
16 BIT OPERATION 32 BIT OPERAT			IT OPERATION		PU	LSE-P		
			Op	oerati	on:			
X0 [S] [n] [D]				with vices	the oper s D+0to	ational effect D+3. Device [ate for the duration being flagged by D+0is an off-delay /hen D+3 is used in	
X0			the	e cor	nfiguratio	on below, D+ sequence.	1and D+2act in a	

ig seque C

5.7.7 ALT (FNC 66)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps
FNC 66 (Alternate state)	The status of the assigned device is inverted on every operation of the instruction	D Y, M, S	ALT, ALTP: 3 steps

32 BIT OPERATION

[D]

Μ0

ALT

16 BIT OPERATION

X0

+

X0

M0

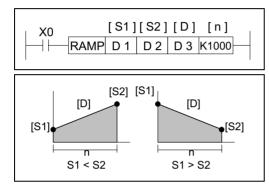
Operation:

The status of the destination device (D) is alternated on every operation of the ALT instruction.

PULSE-P

This means the status of each bit device will flipflop between ON and OFF. This will occur on every program scan unless a pulse modifier or a program interlock is used.

The ALT instruction is ideal for switching between two modes of operation e.g. start and stop, on and off etc.


5.7.8 RAMP (FNC 67)

FX1S FX1N FX2N FX2NC

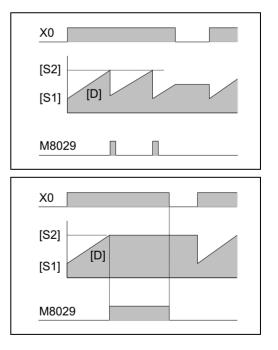
Mnemonic Function			Program steps			
WITEHIOTIC	ranction	S 1	S 2	D	n	Trogram steps
RAMP FNC 67 (Ramp vari- able value)	Ramps a device from one value to another in the specified number of steps	registers id	ses two cons entified as D ead only dev	and D+1	K, H ⊠ Note: n= 1 to 32,767	RAMP: 9 steps

32 BIT OPERATION

16 BIT OPERATION

Operation:

The RAMP instruction varies a current value (D) between the data limits set by the user (S1and S2). The 'journey' between these extreme limits takes n program scans. The current scan number is stored in device D+1. Once the current value of D equals the set value of S2the execution complete flag M8029 is set ON.


PULSE-P

The RAMP instruction can vary both increasing and decreasing differences between S1and S2.

Points to note:

a) FX2N and FX2NC users may set the operation mode of the RAMP instruction by controlling the state of special auxiliary relay M8026. When M8026 is OFF, the RAMP instruction will be in repeat mode. This means when the current value of D equals S2 the RAMP instruction will automatically reset and start again, i.e. the contents of D will be reset to that of S1 and the device D+1 (the number of current scans) will reset to '0' (zero). This is shown in the diagram opposite.

When M8026 is set ON, users will be operating the RAMP instruction in 'Hold mode'. This

Operation

Complete M8029

Flags

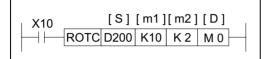
means once the current value of D equals that of S2, the RAMP instruction will 'freeze' in this state. This means the M8029 will be set ON for as long as the instruction remains energized and the value of D will not reset until the instruction is re-initialized, i.e. the RAMP instruction is turned from OFF to ON again.

- b) Users of FX1N and FX1S PLC's cannot change the operating mode of the RAMP instruction. For these PLC's the mode is fixed as in the same case as FX PLC's when M8026 has been set ON, i.e. HOLD mode.
- c) If the RAMP instruction is interrupted before completion, then the current position within the ramp is 'frozen' until the drive signal is re-established. Once the RAMP instruction is re-driven registers D and D+1 reset and the cycle starts from its beginning again.
- d) If the RAMP instruction is operated with a constant scan mode, i.e. D8039 is written to with the desired scan time (slightly longer than the current scan time) and M8039 is set ON. This would then allow the number of scans n (used to create the ramp between S1and S2) to be associated to a time. If 1 scan is equal to the contents of D8039 then the time to complete the ramp is equal to n × D8039.

The RAMP instruction may also be used with special M flags M8193 and M8194 to mimic the operation of the SER (FNC 61) and RS (FNC 80) respectively when being programmed on older versions of programming peripherals. See page 1-5 for more details.

5.7.9 ROTC (FNC 68)

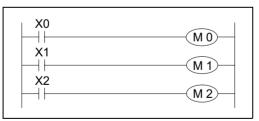
FX1s FX1N FX2N FX2NC


Mnemonic	Function		Program steps			
winemonic	Tunction	S	m 1	m2	D	r rogram steps
ROTC FNC 68 (Rotary table control)	Controls a rotary tables movement is response to a requested destination/ position	D Note: uses 3 consecu- tive devices S+1≤ m1	K, H ⊠ Note: m1= 2 to 32,767 m1≥	K, H ⊠ Note: m2= 0 to 32,767 ≥ m2	Y, M, S Note: uses 8 consecu- tive devices	ROTC: 9 steps

Operation:

16 BIT OPERATION

32 BIT OPERATION


PULSE-P

The ROTC instruction is used to aid the tracking and positional movement of the rotary table as it moves to a specified destination.

Points to note:

- a) This instruction has many automatically defined devices. These are listed on the right of this page.
- b) The ROTC instruction may only be used **ONCE**.
- c) The ROTC instruction uses a built in 2-phase counter to detect both movement direction and distance travelled. Devices D+0and D+1 are used to input the phase pulses, while device D+2is used to input the 'zero position' on the rotary table. These devices should be programmed as shown in the example below (where the physical termination takes place at the associated X inputs).

The movement direction is found by checking the relationship of the two phases of the 2 phase counter, e.g.

A phase leads B phase	A-phase
B phase leads A phase	A-phase

Assigned devices

Indirect user selected devices:

- D+0 A-phase counter signal input
- D+1 B-phase counter signal input
- D+2 Zero point detection input
- D+3 High speed forward output
- D+4 Low speed forward output
- D+5 Stop output
- D₊₆ Low speed reverse output
- D+7 High speed reverse output

Rotary table constants:

- m1 Number of encoder pulses per table revolution
- m2 Distance to be travelled at low speed (in encoder pulses)

Operation variables:

- S+0 Current position at the 'zero point' READ ONLY
- S+1 Destination position (selected station to be moved to) relative to the 'zero point' - User defined
- S+2 Start position (selected station to be moved) relative to the 'zero point' -User defined

- d) When the 'zero point' input (D+2) is received the contents of device S+0 is reset to '0' (zero). Before starting any new operation it is advisable to ensure the rotary table is initialized by moving the 'zero point' drive dog or marker around to the 'zero point' sensor. This could be considered as a calibration technique. The re-calibration of the rotary table should be carried out periodically to ensure a consistent/accurate operation.
- e) Devices D+3 to D+7 are automatically set by the ROTC instruction during its operation. These are used as flags to indicate the operation which should be carried out next.
- f) All positions are entered in the form of the required encoder pulses. This can be seen in the following example:

- Example:

A rotary table has an encoder which outputs 400 (m1) pulses per revolution. There are 8 stations (0 to 7) on the rotary table. This means that when the rotary table moves from one station to its immediately following station, 50 encoder pulses are counted. The 'zero position' is station '0' (zero). To move the item located at station 7 to station 3 the following values must be written to the ROTC

instruction:

S+1=3 \times 50 = 150 (station 3's position in encoder pulses from the zero point) S+2=7 \times 50 = 350 (station 7's position in encoder pulses from the zero point)

m1= 400 (total number of encoder pulses per rev)

The rotary table is required approach the destination station at a slow speed starting from 1.5 stations before the destination. Therefore;

m2= $1.5 \times 50 = 75$ slow speed distance either side of the destination station (in encoder pulses)

Operation

Complete M8029

Flags

5.7.10 SORT (FNC 69)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands					Program steps
Witternorme	runction	S	m1	m2	D	n	r rogram steps
SORT FNC 69 (SORT Tabulated Data)	Data in a defined table can be sorted on selected fields while retaining record integrity	D ⊠	K, H ⊠ Note: m1= 1 to m2= 1 to		D ⊠	K, H D ⊠ Note: n = 1 to m2	SORT: 11 steps

16 BIT OPERATION

32 BIT OPERATION

X21		[S]	m1	m2	[D]	n	1
	SORT	D100	K 4	K 3	D100	K 2	

Operation:

This instruction constructs a data table of m1 records with m2 fields having a start or head address of S. Then the data in field nis sorted in to numerical order while retaining each individual

PULSE-P

records integrity. The resulting (new) data table is stored from destination device D.

Points to note:

- a) When a sort occurs each record is sorted in to ascending order based on the data in the selected sort field n.
- b) The source (S) and destination (D) areas can be the same BUT if the areas are chosen to be different, there should be no overlap between the areas occupied by the tables.
- c) Once the SORT operation has been completed the 'Operation Complete Flag' M8029 is turned ON. For the complete sort of a data table the SORT instruction will be processed m1times.
- d) During a SORT operation, the data in the SORT table must not be changed. If the data is changed, this may result in an incorrectly sorted table.
- e) The SORT instruction may only be used **ONCE** in a program.

From the example instruction and the 'data table' below left, the following data manipulation will occur when 'n' is set to the identified field

\sim			
()	r1/	~	າດເ
v	110	лп	nal
-			

Table1st table sort when n= 2

2nd table sort when n=1

		FIELD (m2)				
		1	2	3		
	1	(D100)	(D104)	(D108)		
R	1	`32 <i>´</i>	162	4		
R E C	2	(D101)	(D105)	(D109)		
ŏ	2	74	6	200		
Ř	3	(D102)	(D106)	(D110)		
D (m)	3	100	80	62		
	4	(D103)	(D107)	(D111)		
	4	7	34	6		

FIELD (m2) 1 2 3 (D100) (D104) (D108) 1 R 74 6 200 ECORD (D101) (D105) (D109) 2 34 7 6 (D102) (D106) (D110) 3 100 80 62 (D103) (m1) (D107) (D111) 4 32 162 4

FIELD (m2)				
		1	2	3
R E C	1	(D100)	(D104)	(D108)
	I	7	34	6
	2	(D101)	(D105)	(D109)
ő		32	162	4
Ř	3	(D102)	(D106)	(D110)
D	3	74	6	200
(mı)	4	(D103)	(D107)	(D111)
	4	100	80	62

MEMO

1

1.	FNC 00 - 09	Program Flow	5-4
2.	FNC 10 - 19	Move And Compare	5-16
3.	FNC 20 - 29	Arithmetic And Logical Operations (+, -,	, ×, ÷) 5-24
4.	FNC 30 - 39	Rotation And Shift	5-34
5.	FNC 40 - 49	Data Operation	5-42
6.	FNC 50 - 59	High Speed Processing	5-52
7.	FNC 60 - 69	Handy Instructions	5-66
8.	FNC 70 - 79	External FX I/O Devices	5-80
9.	FNC 80 - 89	External FX Serial Devices	5-94
10.	FNC 110-129	Floating Point 1 & 2	5-110
11.	FNC 130-139	Trigonometry (Floating Point 3)	5-118
12.	FNC 140-149	Data Operations 2	5-122
13.	FNC 150-159	Positioning Control	5-126
14.	FNC 160-169	Real Time Clock Control	5-136
15.	FNC 170-179	Gray Codes	5-146
16.	FNC 180-189	Additional Functions	5-146
17.	FNC 220-249	In-line Comparisons	5-150

Done

5.8 External FX I/O Devices - Functions 70 to 79

Contents:

			Page
TKY -	Ten Key Input	FNC 70	5-81
HKY -	Hexadecimal Input	FNC 71	5-82
DSW -	Digital Switch		
	(Thumbwheel input)	FNC 72	5-83
SEGD -	Seven Segment Decoder	FNC 73	5-84
SEGL -	Seven Segment		
	With Latch	FNC 74	5-85
ARWS -	Arrow Switch	FNC 75	5-87
ASC -	ASCII Code	FNC 76	5-88
PR-	'Print' To A Display	FNC 77	5-89
FROM -	Read From A Special		
	Function Block	FNC 78	5-90
TO -	Write To A Special		
	Function Block	FNC 79	5-91

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D_1 , S_3 or for lists/tabled devices D_{3+0} , S_{+9} etc.

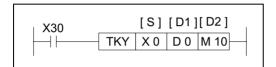
MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- సోసాసాP A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

FX1N FX2N FX2NC

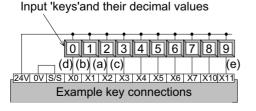

5.8.1 TKY (FNC 70)

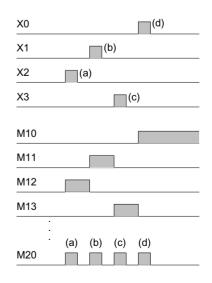
					· ·
Mnemonic	Function		Program steps		
		S	D1	D2	
ТКҮ	Reads 10 devices	X, Y, M, S	KnY, KnM,	Y, M, S	TKY:
FNC 70	with associated	Note: uses 10	KnS,	Note: uses 11	7 steps
(Ten key	decimal values	consecutive	T, C, D, V, Z	consecutive	
input)	into a single	devices	Note: uses 2	devices	DTKY:
	number	(identified as	consecutive	(identified	13 steps
		S+0 to S+9)	devices for 32	D2+0 to D2+10)	
			bit operation		

16 BIT OPERATION

32 BIT OPERATION

PULSE-P


Operation:


This instruction can read from 10 consecutive devices (S_{+0} to S_{+9}) and will store an entered numeric string in device D₁.

FX_{1S}

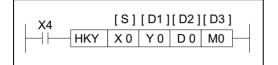
Points to note:

- a) When a source device becomes active its associated destination (bit) device D₂ also becomes active. This destination device will remain active until another source device is operated. Each source device maps directly to its own D₂ device, i.e. S₊₀ maps to D₂₊₀, S₊₇ maps to D₂₊₇ etc. These in turn, map directly to decimal values which are then stored in the destination data devices specified by D₁.
- b) One source device may be active at any one time. The destination device D₂₊₁₀ is used to signify that a key (one of the 10 source devices) has been pressed. D₂₊₁₀ will remain active for as long as the key is held down. When the TKY instruction is active, every press of a key adds that digit to the stored number in D₁. When the TKY is OFF, all of the D₂ devices are reset, but the data value in D₁ remains intact.
- c) When the TKY instruction is used with 16 bit operation, D₁ can store numbers from 0 to 9,999 i.e. max. 4 digits. When the DTKY instruction is used (32 bit operation) values of 0 to 99,999,999 (max. 8 digits) can be accommodated in two consecutive devices D₁and D₁₊₁. In both cases if the number to be stored exceeds the allowable ranges, the highest digits will overflow until an allowable number is reached. The overflowed digits are lost and can no longer be accessed by the user. Leading zero's are not accommodated, i.e. 0127 will actually be stored as 127 only.
- d) The TKY instruction may only be used **ONCE**.
- e) Using the above instruction as a brief example: If the 'keys' identified (a) to (d) are pressed in that order the number 2,130 will be entered into D1. If the key identified as (e) is then pressed the value in D1 will become 1,309. The initial '2' has been lost.

Operation

. Complete M8029

Flags

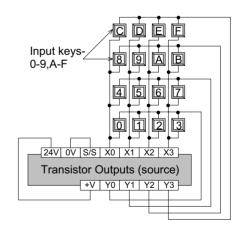

5.8.2 HKY (FNC 71)

FX1s FX1N FX2N FX2NC

Mnemonic Function		Operands				Program steps	
Winemonic	runction	S	D1	D2	D 3	Frogram steps	
НКҮ	Multiplexes inputs	Х,	Υ,	T, C, D, V, Z	Y, M, S	HKY:	
FNC 71	and outputs to	Note:	Note:	Note: uses 2	Note:	9 steps	
(Hexadeci-	create a numeric	uses 4	uses 4	consecutive	uses 8		
mal	keyboard with 6	consecu-	consecu-	devices	consecu-	DHKY:	
key input)	function keys	tive	tive	for 32 bit	tive	17 steps	
		devices	devices	operation	devices		

16 BIT OPERATION

32 BIT OPERATION


Operation 1 - Standard:

PULSE-P

This instruction creates a multiplex of 4 outputs (D_1) and 4 inputs (S) to read in 16 different devices. Decimal values of 0 to 9 can be stored while 6 further function flags may be set.

Points to note:

- a) Each of the first 10 multiplexed source devices (identified as 0 to 9) map directly to decimal values 0 to 9. When entered, i.e. a source device is activated, then its associated decimal value is added to the data string currently stored in D₂. Activation of any of these keys causes bit device D₃₊₇ to turn ON for the duration of that key press.
- b) The last 6 multiplexed source devices (identified as function keys A to F) are used to set bit devices D₃₊₀ to D₃₊₅ respectively. These bit flags, once set ON, remain ON until the next function key has been activated. Activation of any of these keys causes bit device D₃₊₆ to turn ON for the duration of that key press.
- c) In all key entry cases, when two or more keys are pressed, only the key activated first is effective. When the pressing of a key is sensed the M8029 (execution complete flag) is turned ON. When the HKY instruction is OFF, all D₃ devices are reset but data value D₂ remains intact.
- d) When the HKY instruction is used with 16 bit operation, D₂ can store numbers from 0 to 9,999 i.e. max. 4 digits. When the DHKY instruction is used (32 bit operation) values of 0 to 99,999,999 (max. 8 digits) can be accommodated in two consecutive devices D₂ and D₂₊₁. In both cases if the number to be stored exceeds the allowable ranges, the highest digits will overflow until an allowable number is reached. The over-flowed digits are lost and can no longer be accessed by the user. Leading zero's are not accommodated, i.e. 0127 will actually be stored as 127 only. This operation is similar to that of the TKY instruction.

- e) The HKY instruction may only be used ONCE.
- f) Normal operation requires 8 scans to read the key inputs. To achieve a steady and repeatable performance, constant scan mode should be used, i.e. M8039 is set ON and a user defined scan time is written to register D8039. However, for a faster response the HKY instruction should be programmed in a timer interrupt routine as shown in the example opposite.

Operation 2 - Using the HKY Instruction With M8167:

(Applicable units: FX2N and FX2NC)

When the HKY instruction is used with flag M8167 ON (as shown right), the operation of keys A through F allow actual entry of the Hexadecimal values of A through F respectively into the data device D₂. This is in addition to the standard 0 through 9 keys. All other operation is as specified in 'Operation 1 - Standard'. Maximum storage values for this operation become FFFF in 16 bit mode and FFFFFFFF in 32 bit (double word) mode.

I 610	EI FEND M8000 REF X 0 K8 HKY X 0 Y 0 D 0 M 0 REF Y0 K8 IRET END
	17 M8167 HKY X 10 Y 60 D 5 M90 M90 These two program examples perform the same task. 17 SET M8167 HKY X 10 Y 60 D 5 M90 RST M8167

Operation Complete M8029

5.8.3 DSW (FNC 72)

FX1S FX1N FX2N FX2NC

Flags

Mnemonic	onic Function Operands			Program steps		
Witemonic	T unction	S	D 1	D2	n	r rogram steps
DSW FNC 72 (Digital switch)	Multiplexed reading of n sets of digital (BCD) thumbwheels	X Note: If n=2 then 8 devices else 4.	Y Note: uses 4 consecutive devices	T, C, D, V, Z Note: If n=2 then 2 devices else 1.	K, H ⊠ Note: n= 1 or 2	DSW: 9 steps

- 16	BIT	OPERATION	

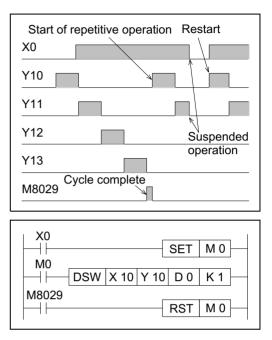
32 BIT OPERATION

⊥ X0		[S]	[D1]	[D2]	[n]	1
	DSW	X 10	Y 10	D 0	K 1	
I						·

Operation:

This instruction multiplexes 4 outputs (D1) through 1 or 2(n) sets of switches. Each set of switches consists of 4 thumbwheels providing a single digit input.

PULSE-P


Points to note:

 a) When n = 1 only one set of switches are read. The multiplex is completed by wiring the thumbwheels in parallel back to 4 consecutive inputs from the head address specified in operand S. The (4 digit) data read is stored in data device D₂.

Continued on next page...

BCD digital switches (1st set)	
24 8 1 12/4 8 24V 0V [5/5] X10 X11 X12 X13 X14 X15 X16 X17	
Transistor Outputs (source)	
+V [Y10]Y11[Y12]Y13	

- b) When n= 2, two sets of switches are read. This configuration requires 8 consecutive inputs taken from the head address specified in operand S. The data from the first set of switches, i.e. those using the first 4 inputs, is read into data device D₂. The data from the second set of switches (again 4 digits) is read into data device D₂₊₁.
- c) The outputs used for multiplexing (D₁) are cycled for as long as the DSW instruction is driven. After the completion of one reading, the execution complete flag M8029 is set. The number of outputs used does **not** depend on the number of switches n.
- d) If the DSW instruction is suspended during midoperation, when it is restarted it will start from the beginning of its cycle and not from its last status achieved.
- e) It is recommended that transistor output units are used with this instruction. However, if the program technique at the right is used, relay output units can be successfully operated as the outputs will not be continually active.
- f) The DSW instruction may be used TWICE on FX2N & FX2NC controllers. FX1s & FX1N units can operate an Unlimited number of DSW instructions.

5.8.4 SEGD (FNC 73)

FX1s FX1N FX2N FX2NC

Flags

Zero M8020

Mnemonic Function -		Oper	Program steps	
		S	D	r rogram steps
SEGD FNC 73 (Seven segment decoder)	Hex data is decoded into a format used to drive seven segment displays	K, H KnX, KnY, KnM, KnS, T, C, D, V, Z Note: Uses only the lower 4 bits	KnY, KnM, KnS, T, C, D, V, Z Note: The upper 8 bits remain unchanged	SEGD, SEGDP: 5 steps

16 BIT OPERATIO	N
------------------------	---

×0	[S] [D]
	SEGD D0 K2Y0
B0 B5 B6 B1 B4 B2 B3	It can be seen that B7 is NOT used. Hence B7 of the destination device D will always be OFF,

Operation:

A single hexadecimal digit (0 to 9, A to F) occupying the lower 4 bits of source device S is decoded into a data format used to drive a seven segment display. A representation of the hex digit is then displayed. The decoded data is stored in the lower 8 bits of destination device D. The upper 8 bits of the same device are not written to. The diagram opposite shows the bit control of the seven segment display. The active bits correspond to those set to 1 in the lower 8 bits of the destination device D.

PULSE-P

5.8.5 SEGL (FNC 74)

FX1S FX1N FX2N FX2NC

Mnemonic	Function		Operands			
	T unction	S	D	n	Program steps	
SEGL FNC 74 (Seven segment with latch)	Writes data to multiplexed single digit displays - 4 digits per set, max. 2 sets	K, H KnX, KnY, KnM, KnS T, C, D, V, Z	Y Note: n = 0 to 3, 8 outputs are used n = 4 to 7, 12 outputs are used	K, H, \bowtie Note: n= 0 to 3, 1 set of 7 Seg active n= 4 to 7, 2 sets of 7 Seg active	SEGL: 7 steps	

16 BIT OPERATION	32 BIT OPERATION		PULSE-P	Flags	Operation Complete M8029
		Opera	ition:		
	ן וחן וען				

This instruction takes a source decimal value (S) and writes it to a set of 4 multiplexed, outputs (D). Because the logic used with latched seven

segment displays varies between display manufactures, this instruction can be modified to suit most logic requirements. Configurations are selected depending on the value of n, see the following page.

Points to note:


SEGL

D 0

Y 0

K 4

- a) Data is written to a set of multiplexed outputs (D+0 to D+7, 8 outputs) and hence seven segment displays. A set of displays consists of 4 single digit seven segment units. A maximum of two sets of displays can be driven with this instruction. When two sets are used the displays share the same strobe outputs (D+4 to D+7 are the strobe outputs). An additional set of 4 output devices is required to supply the new data for the second set of displays (D+10 to D+13, this is an octal addition). The strobe outputs cause the written data to be latched at the seven segment display.
- b) Source data within the range of 0 to 9,999 (decimal) is written to the multiplexed outputs. When one set of displays are used this data is taken from the device specified as operand S. When two sets of displays are active the source device S+1 supplies the data for the second set of displays. This data must again be within the range 0 to 9,999. When using two sets of displays the data is treated as **two** separate numbers and is **not** combined to provide a single output of 0 to 99,999,999.
- c) The SEGL instruction takes 12 program scans to complete one output cycle regardless of the number of display sets used. On completion, the execution complete flag M8029 is set.

- d) If the SEGL instruction is suspended during mid-operation, when it is restarted it will start from the beginning of its cycle and not from its last status achieved.
- e) The SEGL instruction may be used **TWICE** on FX_{2N} & FX_{2NC} controllers. FX_{1S} & FX_{1N} units can operate an **Unlimited** number of SEGL instructions.

Selecting the correct value for operand n

- The selection of parameter n depends on 4 factors;
- 1) The logic type used for the PLC output
- 2) The logic type used for the seven segment data lines
- 3) The logic type used for the seven segment strobe signal

Device co	onsidered	Positive logic	Negative logic	
PLC Logic		Source output	Sink output Pull-up resistor V+ LOW 0V With a sink output, when the output is LOW the internal logic is '1'	
segment signal logic sign		Data is latched and held when this signal is HIGH, i.e. its logic is '1'	Data is latched and held when this signal is LOW, i.e. its logic is '1'	
Display logic	Data signal logic	Active data lines are held HIGH, i.e. they have a logic value of '1'	Active data lines are held LOW, i.e. they have a logic value of '1'	

There are two types of logic system available, positive logic and negative logic. Depending on the type of system, i.e. which elements have positive or negative logic the value of n can be selected from the table below with the final reference to the number of sets of seven segment displays being used:

	PLC Logic Seven segme			n
FLG LOGIC	Data Logic	Strobe logic	1 display set	2 display sets
Positive (Source)	Positive (High)	Positive (High)	0	4
Negative (Sink)	Negative (Low)	Negative (Low)	0	4
Positive (Source)	Positive (High)	Negative (Low)	1	5
Negative (Sink)	Negative (Low)	Positive (High)		5
Positive (Source)	Positive (High)	Negative (Low)	2	6
Negative (Sink)	Negative (Low)	Positive (High)		0
Positive (Source)	Positive (High)	Positive (High)	3	7
Negative (Sink)	Negative (Low)	Negative (Low)	3	1

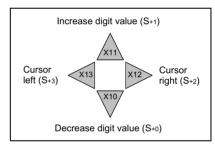
5.8.6 ARWS (FNC 75)

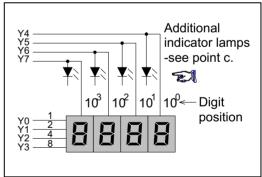
FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands				Program steps
Witternottic	runction	S	D 1	D2	n	r rogram steps
ARWS FNC 75 (Arrow switch)	Creates a user defined, (4 key) numeric data entry panel	X, Y, M, S Note: uses 4 consecu- tive devices	T, C, D, V, Z Note: data is stored in a decimal format	Y Note: uses 8 consecu- tive devices	K, H ⊠ Note: n= 0 to 3,	ARWS: 9 steps

32 BIT OPERATION

PULSE-P


This instruction displays the contents of a single data device D1on a set of 4 digit, seven segment


displays. The data within D1 is actually in a standard decimal format but is automatically converted to BCD for display on the seven segment units. Each digit of the displayed number can be selected and edited. The editing procedure directly changes the value of the device specified as D1.

Operation:

Points to note:

- a) The data stored in destination device D1can have a value from the range 0 to 9,999 (decimal), i.e. 4 digit data. Each digits data value, can be incremented (S+1) or decremented (S+0) by pressing the associated control keys. The edited numbers automatically 'wrap-around' from 9 0 1 and 1 -0 9. The digit data is displayed by the lower 4 devices from D2, i.e. D2+0 to D2+3.
- b) On initial activation of the ARWS instruction, the digit in the numeric position 10 3 is currently selected. Each digit position can be sequentially 'cursored through' by moving to the left (S+2) or to the right (S+3). When the last digit is reached, the ARWS instruction automatically wraps the cursor position around, i.e. after position 10³, position 10 o is selected and vice-versa. Each digit is physically selected by a different 'strobe' output.

- c) To aid the user of an operation panel controlled with the ARWS instruction, additional lamps could be wired in parallel with the strobe outputs for each digit. This would indicate which digit was currently selected for editing.
- d) The parameter n has the same function as parameter n of the SEGL instruction please see page5-86, 'Selecting the correct value for operand n'. Note: as the ARWS instruction only controls one set of displays only values of 0 to 3 are valid for n.
- e) The ARWS instruction can be used **ONCE**. This instruction should only be used on transistor output PLC's.

5.8.7 ASC (FNC 76)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Oper	Program steps	
Witterfiorfic	runction	S	D1	r rogram steps
ASC FNC 76 (ASCII code conversion)	•	Alphanumeric data e.g. 0-9, A - Z and a - z etc. Note: Only one, 8 character string may be entered at any one time.	T, C, D Note: uses 4 consecutive devices	ASC : 7 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

Operation:

The source data string S consists of up to 8 characters taken from the printable ASCII character (Char) set. If less than 8 Char are used, the difference is made up with null Char (ASCII 00).

The source data is converted to its associated ASCII codes. The codes are then stored in the destination devices D, see example shown below.

D	Byte			
D	High	Low		
D300	58 (X)	46 (F)		
D301	36 (6)	2D (-)		
D302	4D (M)	34 (4)		
D303	21 (!)	52 (R)		

Note: ASCII Char cannot be entered from a hand held programmer.

Operation

Complete M8029

5.8.8 PR (FNC 77)

FX1s FX1N FX2N FX2NC

Flags

Mnemonic	Function	Operands		Program steps
Witternottic	ranction	S	D1	r rogram steps
PR FNC 77 (Print)	Outputs ASCII data to items such as display units	T, C, D Note: 8 byte mode (M8027=OFF) uses 4 consecutive devices 16 byte mode (M8027= ON) uses 8 consecutive devices	Y Note: uses 10 consecutive devices.	PR: 5 steps

```
16 BIT OPERATION
```

Operation:

32 BIT OPERATION

[S] [D]

D300 Y 0

PR

Source data (stored as ASCII values) is read byte by byte from the source data devices. Each byte is mapped directly to the first 8 consecutive

PULSE-P

destination devices D+0 to D+7). The final two destination bits provide a strobe signal (D+10, numbered in octal) and an execution/busy flag (D+11, in octal).

Points to note:

X0

- a) The source byte-data maps the lowest bit to the first destination device D₊₀. Consequently the highest bit of the byte is sent to destination device D₊₇.
- b) The PR instruction may only be used **TWICE** in a sequence program. This instruction should only be used on transistor output PLC's. The PR instruction will not automatically repeat its operation unless the drive input has been turned OFF and ON again.
- c) The operation of the PR instruction is program scan dependent. Under standard circumstances it takes 3 program scans to send 1 byte. However, for a faster operation the PR instruction could be written into a timer interrupt routine similar to the one demonstrated for HKY on page 5-82.
- d)8 byte operation has the following timing diagram. It should be noted that when the drive input (in the example X0) is switched OFF the PR instruction will cease operation. When it is restarted the PR instruction will start from the beginning of the message string. Once all 8 bytes have been sent the execution/busy flag is dropped and the PR instruction suspends operation.
- e) 16 byte operation requires the special auxiliary flag M8027 to be driven ON (it is recommended that M8000 is used as a drive input). In this operation mode the drive input (in the example X0) does not have to be active all of the time. Once the PR instruction is activated it will operate continuously until all 16 bytes of data have been sent or the value 00H (null) has been sent. Once the operation is complete the execution/busy flag (D+11, octal) is turned OFF and M8029 the execution complete flag is set.

Note:To=scan time, see note c. X0
Y0 - Y7 (D+0 - D+7) YFXX - X6 T0 + H + T0 T0 + H + T0
Y10 (D=10) Y11 (D=11)
Noto:To-coon time, soo noto o
Note:To=scan time, see note c. X0
X0 Y0 - Y7 (D+0 - D+7) T0 + + + T0

5.8.9 FROM (FNC 78)

FX1s FX1N FX2N FX2NC

Mnemonic	Function		Oper	ands		Program steps
Millenionie	T unction	m 1	m 2	D	n	r rogram steps
FROM FNC 78 (FROM)	Read data from the buffer memories of attached special function blocks	K, H ⊠ Note: m1= 0 to 7	Note:	KnY, KnM, KnS, T, C, D, V, Z	K, H ⊠ Note: 16 bit op: n= 1 to 32 32 bit op: n= 1 to 16	FROM, FROMP: 9 steps DFROM, DFROMP: 17 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

The FROM instruction reads n words of data starting from the buffer memory address m₂ of the special function block with the logical block

position specified as m₁, The read data is stored in the PLC at head address D for n word devices.

Operation:

Points to note:

a) All special function blocks which are addressable with the FROM/TO instructions are connected to the extension bus on the right hand side of the PLC. Each special function block can be inserted at any point within the chain of extended units (as long as the system configuration rules are not broken). Each special function block is consecutively addressed from 0 to 7 beginning with the one closest to the base unit.

	Special function C block 0	Dutput block 750-57	Special function block 1	Special function block 2
FX-80MR				
)	FX-4AD	FX-8EYT	FX-1HC	FX-2DA
	CHA CHA CHA © OFFSET © GAIN			READY CH2 OFFSET GAIN UP DOWN

b) Each special function unit has different buffer memory registers. These often have a dedicated use for each individual unit. Before any reading or writing of data is undertaken ensure that the correct buffer memory allocations for the unit used are known.

m₂: This defines the head address of the (special function blocks) buffer memories being accessed. m₂ may have a value from the range 0 to 31.

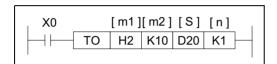
n: This identifies the number of words which are to be transferred between the special function block and the PLC base unit. n may have a value of 1 to 31 for 16 bit operation but a range of 1 to 16 is available for 32 bit operation.

- c) The destination head address for the data read FROM the special function block is specified under the D operand; and will occupy n further devices.
- d) This instruction will only operate when the drive input is energized.

e) Users of all PLC models have the option of allowing interrupts to occur immediately, i.e. during the operation of the FROM/TO instructions or to wait until the completion of the current FROM/TO instruction. This is achieved by controlling the special auxiliary flag M8028. The following table identifies certain points associated with this control and operation.

Interruption Disabled	Interruption Enabled
M8028 = OFF	M8028 = ON
Jumps called by interrupt operation are delayed until the completion of the data transfer of the FROM/TO instruction	Jumps called by interrupt operation occur immediately
A small delay of (800m +200) μsec can be expected in the worst case. Note: m = the number of 32 bit words	Data transfer will resume upon return from the interrupt program. This may not be desirable if a FROM/TO instruction has been programmed within the called interrupt
Ensures that FROM/TO instructions included in an interrupt program will not interact with others elsewhere	M8028 should only be used when a very short delay is required in applications where timing and accuracy's are important

Users of FX1s have no option for interruption of the FROM/TO instructions and hence always operate in a mode equivalent to having M8028 switched OFF.


5.8.10 TO (FNC 79)

FX1s FX1N FX2N FX2NC

Mnemonic	Function		Program steps			
Witternottic	m1		m2 S		n	r rogram steps
TO FNC 79 (TO)	Writes data to the buffer memories of attached special function blocks	K, H ⊠ Note: m1= 0 to 7	K, H \bowtie Note: m ₂ = 0 to 32767	K,H, KnX, KnY, KnM, KnS, T, C, D, V, Z	K, H ⊠ Note: 16 bit op: n= 1 to 32 32 bit op: n= 1 to 16	TO, TOP: 9 steps DTO, DTOP: 17 steps

32 BIT OPERATION

ON

Operation:

The TO instruction writes n words of data to the head buffer memory address m₂ of the special function block with the logical block position specified in m₁. The written data is taken from the PLC's head address S for n word devices.

PULSE-P

Points to note:

All points are the same as the FROM instruction (see previous page) except point c) which is replaced by the following:

a) The source head address for the data written TO the special function block is specified under the S operand.

MEMO

Applied Instructions: FX₁s FX1N FX_{2N} FX2NC **Program Flow** 1. 5-4 FNC 00 - 09 2. Move And Compare 5-16 FNC 10 - 19 Arithmetic And Logical Operations $(+, -, \times, \div)$ 3. FNC 20 - 29 5-24 **Rotation And Shift** 4. 5-34 FNC 30 - 39 5. **Data Operation** 5-42 FNC 40 - 49 6. High Speed Processing FNC 50 - 59 5-52 7. Handy Instructions FNC 60 - 69 5-66 External FX I/O Devices 8. FNC 70 - 79 5-80 9. **External FX Serial Devices** FNC 80 - 89 5-94 10. Floating Point 1 & 2 FNC 110-129 5-110 11. Trigonometry (Floating Point 3) FNC 130-139 5-118 12. **Data Operations 2** FNC 140-149 5-122 13. **Positioning Control** FNC 150-159 5-126 14. FNC 160-169 Real Time Clock Control 5-136 **Gray Codes** 15. FNC 170-179 5-146 **Additional Functions** 16. FNC 180-189 5-146 In-line Comparisons 17. FNC 220-249 5-150

Done

5.9 External FX Serial Devices - Functions 80 to 89

Contents:

			Faye
RS -	RS Communications	FNC 80	5-95
PRUN -	FX2-40AP Parallel Run	FNC 81	5-96
ASCI -	Hexadecimal to ASCII	FNC 82	5-98
HEX -	ASCII to Hexadecimal	FNC 83	5-99
CCD -	Check Code	FNC 84	5-100
VRRD -	FX-8AV Volume Read	FNC 85	5-101
VRSD -	FX-8AV Volume Scale	FNC 86	5-101
አአአ-	Not Available	FNC 87	
PID -	PID Control Loop	FNC 88	5-102
አአአ -	Not Available	FNC 89	

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D_1 , S_3 or for lists/tabled devices D_{3+0} , S_{+9} etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

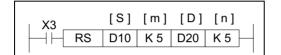
Instruction modifications:

- かかか An instruction operating in 16 bit mode, where かかか identifies the instruction mnemonic.
- $rac{h}{h}rac{h}{h}P$ A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

Zero M8020

Borrow M8021 Carry M8022

5.9.1 RS (FNC 80)


FX1S FX1N FX2N FX2NC

Flags

Mnemonic	Function		Program steps			
Whichiofic	Tunction	S	m	D	n	r rogram steps
RS FNC 80 (Serial Com- munications instruction)	Used to control serial communications from/to the programmable controller	D (including file registers)	K, H, D ⊠ m = 1 to 256, FX2N 1 to 4096.	D	K, H, D ⊠ m = 1 to 256, FX2N 1 to 4096	RS: 9 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

This instruction performs the direct control of communications over FX and FX_{0N} communication adapters which connect to the left hand port of the Main Processing Unit, i.e. FX_{0N}-232ADP, FX-232ADP etc.

PULSE-P

Points to note:

- a) This instruction has many automatically defined devices. These are listed in the boxed column to the right of this page.
- b) The RS instruction has two parts, send (or transmission) and receive. The first elements of the RS instruction specify the transmission data buffer (S) as a head address, which contains m number of elements in a sequential stack.

The specification of the receive data area is contained in the last two parameters of the RS instruction. The destination (D) for received messages has a buffer or stack length of n data elements. The size of the send and receive buffers dictates how large a single message can be.

Buffer sizes may be updated at the following times:

 Transmit buffer - before transmission occurs, i.e. before M8122 is set ON
 Receive buffer - after a message has been received and before M8123 is reset.

- c) Data cannot be sent while a message is being received, the transmission will be delayed - see M8121.
- d) More than one RS instruction can be programmed but only one may be active at any one time.
- e) Refer to the FX Communications Manual when using this function

Assigned devices

Data devices:

- D8120 Contains the configuration parameters for communication, i.e. Baud rate,Stop bits etc. Full details over the page
- D8122 Contains the current count of the number of remaining bytes to be sent in the currently transmitting message.
- D8123 Contains the current count of the number of received bytes in the 'incoming' message.
- D8124 Contains the ASCII code of the character used to signify a message header - default is 'STX', 02 HEX.
- D8125 Contains the ASCII code of the character used to signify a message terminator -default is 'ETX', 03 HEX.

Operational flags:

- M8121 This flag is ON to indicate a transmission is being delayed until the current receive operation is completed.
- M8122 This flag is used to trigger the transmission of data when it is set ON.
- M8123 This flag is used to identify (when ON) that a complete message has been received.
- M8124 Carrier detect flag. This flag is for use with FX and FX2C Main Processing Units. It is typically useful in modem communications
- M8161 8 or 16 bit operation mode ON = 8 bit mode where only the lower 8 bits in each source or destination device are used, i.e. only one ASCII character is stored in one data register OFF = 16bit mode where all of the available source/ destination register is used, i.e. two ASCII characters are stored in each data register.

5.9.2 RUN (FNC 81)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Oper	Program steps			
	Tunction	S	D	Trogram steps		
PRUN	Used to control	KnX, KnM	KnY, KnY	PRUN,		
FNC 81 (Parallel run)	the FX parallel link adapters: FX2-40AW/AP	Note: n = 1 to 8 For ease and convenier bit should be a multiple of Y30 etc.		PRUNP: 5 steps DPRUN, DPRUNP: 9 steps		

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

Operation:

This instruction is used with the FX parallel link adapters. It allows source data to be moved into the bit transmission area. The actual control of the parallel link communication is by special M flags.

Points to note:

 a) Parallel link communications automatically take place when both systems are 'linked' and the Master station (M8070), Slave station flags (M8071) have been set ON (there is no need to have a PRUN instruction for communications). There can only be one of each type of station as this system connects only two FX PLC's. The programs shown opposite should be inserted into the appropriate FX PLC's programs.

M8000	Master FX PC	M8070
M8000	Slave FX PC	M8071

Once the station flags have been set, they can only be cleared by either forcibly resetting them when the FX PLC is in STOP mode or turning the power OFF and ON again.

b) During automatic communications the following data is 'swapped' between the Master and Slave PLC's.

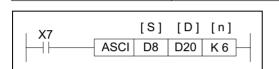
	Master station	Communication	Slave Station		
	Bit Data	direction	Bit Data		
	M800 to M899 (100 points)	\rightarrow	M800 to M899 (100 points)		
M8070 =	M900 to M999 (100 points)	\leftarrow	M900 to M999 (100 points)	M8071 =	
ON	Data words		Data words	ON	
	D490 to D499 (10 points)	\rightarrow	D490 to D499 (10 points)		
	D500 to D509 (10 points)	\leftarrow	D500 to D509 (10 points)		

Continued...

c) The PRUN instruction enables data to be moved into the bit transmission area or out of the (bit) data received area. The PRUN instruction differs from the move statement in that it operates in octal. This means if K4X20 was moved using the PRUN instruction to K4M920, data would not be written to M928 and M929 as these devices fall outside of the octal counting system. This can be seen in the diagram below.

the PRUN instruction

d) For more information please see page 9-6.


5.9.3 ASCI (FNC 82)

FX1s FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
Witternottic	runction	S		n	
ASCI FNC 82 (Converts HEX to ASCII)	Converts a data value from hexadecimal to ASCII	K, H, KnX, KnY, KnM, KnS T, C, D, V, Z	KnY, KnM, KnS T, C, D	K, H Note: n = 1 to 256 ⊠	ASCI, ASCIP: 7 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

This instruction reads n hexadecimal data characters from head source address (S) and converts them in to the equivalent ASCII code. This is then stored at the destination (D) for n number of bytes.

PULSE-P

Points to note:

Please note that data is converted 'as read', i.e. using the example above with the following data in (D9,D8) AB**CD**H,**EF26**H. Taking the first n hexadecimal characters (digits) from the right (in this case n= 6) and converting them to ASCI will store values in 6 consecutive bytes from D20, i.e. D20 = (67, 68), D21 = (69, 70) and D22 = (50, 54) respectively. In true characters symbols that would be read as **CDEF26**.

This can be shown graphically as in the table to the right. Please take special note that the source data (S) read from the most significant device to the least significant. While the destination data (D) is read in the opposite direction.

The ASCI instruction can be used with the M8161, 8 bit/16bit mode flag. The effect of this flag is exactly the same as that detailed on page 10-20. The example to the right shows the effect when M8161 is OFF.

Sou	rce (S)	Data						
	b12-15	А		Destination		ASCII	C. mahal	
D9	b8-11	В		((D)		DEC	Symbol
Da	b4-7	С	\rightarrow	D 00	b8-15	43	67	'C'
	b0-3	D	\rightarrow	D20	b0-7	44	68	'D'
	b12-15	Е	\rightarrow	D21	b8-15	45	69	'E'
D8	b8-11	F	\rightarrow	DZI	b0-7	46	70	Έ
00	b4-7	2	\rightarrow	D22	b8-15	32	50	'2'
	b0-3	6	\rightarrow	022	b0-7	36	54	'6'

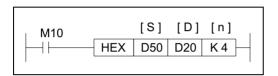
If M8161 was set ON, then only the lower

destination byte (b0-7) would be used to store data and hence 6 data registers would be required (D20 through D25).

ASCII Character Codes

The table below identifies the usable hexadecimal digits and their associated ASCII codes

HE Chara		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
ASCII	HEX	30	31	32	33	34	35	36	37	38	39	41	42	43	44	45	46
Code	DEC	48	49	50	51	52	53	54	55	56	57	65	66	67	68	69	70
Chara Sym		'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'	'8'	'9'	'A'	'B'	'C'	'D'	'E'	'F'


5.9.4 HEX (FNC 83)

FX1S FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
Witemonic	ranction	S	D	n	r rogram steps
HEX FNC 83 (Converts ASCII to HEX)	Converts a data value from ASCII in to a hexadecimal equivalent	K, H, KnX, KnY, KnM, KnS T, C, D	KnY, KnM, KnS T, C, D, V, Z	K, H Note: n = 1 to 256 ⊠	HEX, HEXP: 7 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

This instruction reads n ASCII data bytes from head source address (S) and converts them in to the equivalent Hexadecimal character. This is then stored at the destination (D) for n number of bytes.

PULSE-P

Points to note:

Please note that this instruction 'works in reverse' to the ASCI instruction, i.e. ASCII data stored in bytes is converted into associated hexadecimal characters. The HEX instruction can be used with the M8161 8bit/16bit flag. In this case the source data (S)is read from either the lower byte (8bits) when M8161 is ON, or the whole word when M8161 is OFF i.e. using the example above with the following data in devices D50 and D51 respectively (43H,41H) (42H,31H) and assuming M8161 is ON.

The ASCII data is converted to its hexadecimal equivalent and stored sequentially digit by digit from the destination head address.

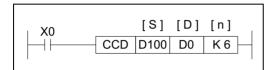
If M8161 had been OFF, then the contents of D20 would read CAB1H.

		Code	C. mahal		Desti	nation	Data
Source (S)	HEX	DEC	Symbol		(D)		Data
DE1 b8-15	43	67	'C'			b12-15	-
D51 _{b0-7}	41	65	'A'		FSSSSSSSSSSSSS	b8-11	-
DE0 b8-15	42	66	'B'	J	D20	b4-7	А
D50 _{b0-7}	31	49	'1'	\rightarrow		b0-3	1

For further details regarding the use of the HEX instruction and about the available ASCII data ranges, please see the following information point 'ASCII Character Codes' under the ASCI instruction on the previous page.

Important:

If an attempt is made to access an ASCII Code (HEX or Decimal) which falls outside of the ranges specified in the table on previous page, the instruction is not executed. Error 8067 is flagged in data register D8004 and error 6706 is identified in D8067. Care should be taken when using the M8161 flag, and additional in the specification of the number of element 'n' which are to be processed as these are the most likely places where this error will be caused.


5.9.5 CCD (FNC 84)

FX1S FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
Witemonic	runction	S	D	n	r rogram steps
CCD FNC 84 (Check Code)	Checks the 'vertical' parity of a data stack	KnX, KnY, KnM, KnS T, C, D	KnY, KnM, KnS T, C, D	K, H D Note: n = 1 to 256 ⊠	CCD, CCDP: 7 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

This instruction looks at a byte (8 bit) stack of data from head address (S)for n bytes and checks the vertical bit pattern for parity and sums the total data stack. These two pieces of data are then stored at the destination (D).

PULSE-P

Points to note:

- a) The SUM of the data stack is stored at destination D while the Parity for the data stack is stored at D₊₁.
- b) During the Parity check an even result is indicated by the use of a 0 (zero) while an odd parity is indicated by a 1 (one).
- c) This instruction can be used with the 8 bit/ 16 bit mode flag M8161. The following results will occur under these circumstances. See page 10-20 for more details about M8161.

	M8161=OFF											
Sour	Sourse (S)			Bit patterm								
D100	н	FF	1	1	1	1	1	1	1	1		
0100	L	FF	1	1	1	1	1	1	1	1		
D101	н	FF	1	1	1	1	1	1	1	1		
	L	00	0	0	0	0	0	0	0	0		
D102	н	F0	1	1	1	1	0	0	0	0		
DIUZ	L	0F	0	0	0	0	1	1	1	1		
Vertic	cal											
party D1			0	0	0	0	0	0	0	0		
SUM	SUM DO 3FC											

M8161=ON											
Sourse	(S)			В	it pa	atter	m				
D100 L	FF	1	1	1	1	1	1	1	1		
D101 L	00	0	0	0	0	0	0	0	0		
D102 L	0F	0	0	0	0	1	1	1	1		
D103 L	F0	1	1	1	1	0	0	0	0		
D104 L	F0	1	1	1	1	0	0	0	0		
D105 L	0F	0	0	0	0	1	1	1	1		
Vertical											
party							1				
D1											
SUM DO		2FD									

It should be noted that when M8161 is OFF 'n' represents the number of consecutive bytes checked by the CCD instruction. When M8161 is ON only the lower bytes of 'n' consecutive words are used.

The 'SUM' is quite simply a summation of the total quantity of data in the data stack. The Parity is checked vertically through the data stack as shown by the shaded areas.

5.9.6 VRRD (FNC 85)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps		
Witemonic	ranction	S		r rogram steps	
VRRD FNC 85 (Volume read)	Reads an analog value from 1 of 8 volume inputs on the FX-8AV	K, H Note: S= 0 to 7 corresponding to the 8 available volumes on the FX-8AV	KnY, KnM, KnS T, C, D, V, Z	VRRD, VRRDP: 5 steps	

16 BIT OPERATION	32 BIT OPERA	TION	PULSE-P
	[S] [D] K0 D0	an an	t ion: entified volume (S) on th alog input. The analog c, i.e. values from 0 to 25

The identified volume (S) on the FX-8AV is read as an analog input. The analog data is in an 8 bit format, i.e. values from 0 to 255 are readable. The read data is stored at the destination device identified under operand D.

Note:

The FX-8AV volume 'inputs' are able to be read in two formats, a) as an analog value and b) as an 11 (0 to 10) position rotary switch. The second use is described in the VRSC instruction (FNC 86).

5.9.7 VRSD (FNC 86)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps	
Witternottic	T unction	S	D	r rogram steps
VRSC FNC 86 (Volume scale)	Reads the set position value, 0 to 10, from volume inputs on the FX-8AV	K, H Note: S= 0 to 7 corresponding to the 8 avail- able volumes on the FX-8AV	KnY, KnM, KnS T, C, D, V, Z	VRSC, VRSCP: 5 steps

16 BIT OPERATION

X0

Operation:

32 BIT OPERATION

[S] [D]

VRSC K1 D1

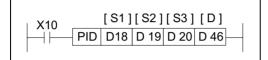
The identified volume (S) on the FX-8AV is read as a rotary switch with 11 set positions (0 to 10). The position data is stored at device D as an integer from the range 0 to 10.

PULSE-P

Note:

The FX-8AV volume 'inputs' are able to be read in two formats, a) as a 11 (0 to 10) position rotary switch and b) as an analog value. The second use is described in the VRRD instruction (FNC 85).

5.9.8 PID (FNC 88)


FX1S FX1N FX2N FX2NC

Mnemonic	Function				Program steps	
Millenionie	T unction	S 1	S 2	S 3	D	r rogram steps
PID FNC 88 (PID control loop) register each	Receives a data input and calculates a corrective action to a specified level based on PID control	D⊠ Note: S use a si data reç	ngle	D⊠ Note: S₃ uses 25 consecutive data registers	D⊠ Note: D uses a single data register	PID: 9 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

Operation:

This instruction takes a current value (S_2) and compares it to a predefined set value (S_1) . The difference or error between the two values is then processed through a PID loop to produce a

correction factor which also takes into account previous iterations and trends of the calculated error. The PID process calculates a correction factor which is applied to the current output value and stored as a corrected output value in destination device (D). The setup parameters for the PID control loop are stored in 25 consecutive data registers S₃+0 through S₃+24.

Points to note:

- a) Every PID application is different. There will be a certain amount of "trial and error" necessary to set the variables at optimal levels.
- b) On FX_{2N}, FX_{2NC} & FX_{1N} MPUs a Pre-tuning feature is available that can quickly provide initial values for the PID process. Refer to page 10-28 for more details.
- c) The FX1s does not have analog capabilities, it is therefore necessary to use RS232 communications to achieve basic PID operation.
- d) As 25 data register are required for the setup parameters for the PID loop, the head address of this data stack cannot be greater than D975. The contents of this data stack are explained later in this section. Multiple PID instructions can be programmed, however each PID loop must not have conflicting data registers.
- e) There are control limits in the PLC intended to help the PID controlled machines operate in a safe manner. If it becomes necessary to reset the Set Point Value (S₁) during operation, it is recommended to turn the PID command Off and restore the command after entering the new Set Point Value. This will prevent the safety control limits from stopping the operation of the PID instruction prematurely.
- f) The PID instruction has a special set of error codes associated with it. Errors are identified in the normal manner. The error codes associated with the PID loop will be flagged by M8067 with the appropriate error code being stored in D8067. These error devices are not exclusive to the PID instruction so care should be taken to investigate errors properly. Please see chapter 6, 'Diagnostic Devices' for more information.
- g) A full PID iteration does not have to be performed. By manipulation of the setup parameters P (proportional), I (Integral) or D (derivative) loops may be accessed individually or in a user defined/selected group. This is detailed later in this section.

PID Equations

 $PV_{nf} > SV$

Forward

$$\Delta MV = K_{p} \left\{ (EV_{n} - EV_{(n-1)}) + \frac{T_{S}}{T_{I}}EV_{n} + D_{n} \right\}$$

 $EV_n = PV_{nf} - SV$

$$D_{n} = \frac{T_{D}}{T_{S} + K_{D} \cdot T_{D}} (-2PV_{nf-1} + PV_{nf} + PV_{nf-2}) + \frac{K_{D} \cdot T_{D}}{T_{S} + K_{D} \cdot T_{D}} \cdot D_{n-1}$$

 PV_{nf}

$$\begin{split} MV_{n} &= \sum \Delta MV \\ SV > PV_{nf} \\ \Delta MV &= K_{P} \Big\{ (EV_{n} - EV_{n-1}) + \frac{T_{s}}{T_{1}} EV_{n} + D_{n} \Big\} \\ EV_{n} &= SV - PV_{nf} \\ D_{n} &= \frac{T_{D}}{T_{s} + K_{D} \cdot T_{D}} (2PV_{nf-1} - PV_{nf} - PV_{nf-2}) + \frac{K_{D} \cdot T_{D}}{T_{s} + K_{D} \cdot T_{D}} \cdot D_{n-1} \\ MV_{n} &= \sum \Delta MV\Delta \\ PV_{nf} &= PV_{n} + \alpha (PV_{nf-1} - PV_{n}) \\ EV_{n} &= \text{the current Error Value} \\ EV_{n-1} &= \text{the previous Error Value} \\ D_{n} &= \text{the previous Derivative Value} \\ \end{split}$$

EV_{n-1} ivative Value SV = the Set Point Value (S₁) $K_{\mathbf{P}}$ = the Proportion Constant PV_n = the current Process Value (S₂) α = the Input Filter PV_{nf} = the calculated Process Value T_s = the Sampling Time PV_{nf-1} = the previous Process Value T_{I} = the Integral Time Constant PV_{nf-2} = the second previous Process Value T_{D} = the Time Derivative Constant ΔMV = the change in the Output K_D = the Derivative Filter Constant Manipulation Values MV_n = the current Output Manipulation Value (D)

Please see the Parameter setup section for a more detailed description of the variable parameters and in which memory register they must be set.

Forward and Reverse operation (S₃+1, b0)

The Forward operation is the condition where the Process Value, PV_{nf}, is greater than the Set Point, SV. An example is a building that requires air conditioning. Without air conditioning, the temperature of the room will be higher than the Set Point so work is required to lower PV_{nf}.

The Reverse operation is the condition where the Set Point is higher than the Process Value. An example of this is an oven. The temperature of the oven will be too low unless some work is done to raise it, i.e. - the heating element is turned On.

The assumption is made with PID control that some work will need to be performed to bring the system into balance. Therefore, ΔMV will always have a value. Ideally, a system that is stable will require a constant amount of work to keep the Set Point and Process Value equal.

PID setup parameters; S3

The PID setup parameters are contained in a 25 register data stack. Some of these devices require data input from the user, some are reserved for the internal operation and some return output data from the PID operation.

Parame- ter S3 + P	Parameter name/function		Description			
S3+0	Sampling time Ts	The time Process	The time interval set between the reading the current Process Value of the system (PV _{nf})			
		b0	Reverse operation (1)			
S3+1	Action - reaction direction and alarm control	b1	Process Value (PV _{nf}) alarm enable, OFF(0)/ ON(1)	Not applicable		
		b2 b3 - 15	Output Value (MV) alarm enable, OFF(0)/ON(1) Reserved			
S3+2	Input filter α		e effect of the input filter.	0 to 99%		
S ₃ +3	Proportional gain Kp	This is a known m	factor used to align the proportional output in a agnitude to the change in the Process Value This is the P part of the PID loop.	1 to 32767%		
S3+4	Integral time constant T_I	This is th	his is the I part of the PID loop. his is the time taken for the corrective integral value to each a magnitude equal to that applied by the roportional or P part of the loop. electing 0 (zero) for this parameter disables the I effect.			
S3+5	Derivative gain K ɒ	This is a known pi (PV _{nf})	his is a factor used to align the derivative output in a nown proportion to the change in the Process Value PV _{nf})			
S ₃ +6	Derivative time constant T D	This is th reach a r	his is the D part of the PID loop. his is the time taken for the corrective derivative value to each a magnitude equal to that applied by the roportional or P part of the loop. electing 0 (zero) for this parameter disables the D effect.			
S ₃ +7 to S ₃ +19		Res	served for use for the internal processing			
S ₃ +20	Process Value, maximum positive change	Active when S ₃ +1,	This is a user defined maximum limit for the Process Value (PVnf). If the Process Value (PVnf) exceeds the limit, S3+24, bit b0 is set On.			
S ₃ +21	Process Value, minimum value	b1 is set ON.	This is a user defined lower limit for the Process Value. If the Process Value (PVnf) falls below the limit, S ₃ +24, bit b1 is set On.			
S3+22	Output Value, maximum positive change	Active when	This is a user defined maximum limit for the quantity of positive change which can occur in one PID scan. If the Output Value (MV) exceeds this, S ₃ +24, bit b2 is set On.	0 to 32767		
S ₃ +23	Output Value, maximum negative change	b2 is set ON.	D2 is This is a user defined maximum limit for the			
		b0	High limit exceeded in Process Value (PVnf)			
	Alorm floor	b1	Below low limit for the Process Value (PVnf)	Not		
S ₃ +24	Alarm flags (Read Only)	b2	Excessive positive change in Output Value (MV)	Not applicable		
	(noud only)	b3	Excessive negative change in Output Value (MV)	SPP		
		b4 - 15	Reserved			

Parameters S_3+0 through S_3+6 must be set by the user.

See **Initial values for PID loops** for basic guidance on initial PID values; page 5-114. See page 10-24 for additional parameters available with FX_{2N}, FX_{2NC} & FX_{1N} MPUs.

Configuring the PID loop

The PID loop can be configured to offer variations on PID control. These are as follows:

Control	Select	ion via setup reg	gisters	Description
method	S3+3 (Кр)	S3+ 4 (TI)	S3 + 6 (T D)	Description
Р	User value	Set to 0 (zero)	Set to 0 (zero)	Proportional effect only
PI	User value	User value	Set to 0 (zero)	Proportional and integral effect
PD	User value	Set to 0 (zero)	User value	Proportional and derivative effect
PID	User value	User value	User value	Full PID

It should be noted that in all situations there must be a proportional or 'P' element to the loop.

P - proportional change

When a proportional factor is applied, it calculates the difference between the Current Error Value, EV_n , and the Previous Error Value, EV_{n-1} . The Proportional Change is based upon how fast the Process Value is moving closer to (or further away from) the Set Point Value NOT upon the actual difference between the PV_{nf} and SV.

Note: Other PID systems might operate using an equation that calculates the Proportional change based upon the size of the Current Error Value only.

I - integral change

Once a proportional change has been applied to an error situation, 'fine tuning' the correction can be performed with the I or integral element.

Initially only a small change is applied but as time increases and the error is not corrected the integral effect is increased. It is important to note how T_I actually effects how fast the total integral correction is applied. The smaller T_I is, the bigger effect the integral will have.

Note: The T_I value is set in data register S₃₊₄. Setting zero for this variable disables the Integral effect.

The Derivative Change

The derivative function supplements the effects caused by the proportional response. The derivative effect is the result of a calculation involving elements T_D , T_S , and the calculated error. This causes the derivative to initially output a large corrective action which dissipates rapidly over time. The speed of this dissipation can be controlled by the value T_D : If the value of T_D is small then the effect of applying derivative control is increased.

Because the initial effect of the derivative can be quite severe there is a 'softening' effect which can be applied through the use of K_D , the derivative gain. The action of K_D could be considered as a filter allowing the derivative response to be scaled between 0 and 100%.

The phenomenon of chasing, or overcorrecting both too high and too low, is most often associated with the Derivative portion of the equation because of the large initial correction factor.

Note: The T_D value is set in Data register S_3 +6. Setting zero for this variable disables the Derivative effect.

Effective use of the input filter α S_3+2

To prevent the PID instruction from reacting immediately and wildly to any errors on the Current Value, there is a filtering mechanism which allows the PID instruction to observe and account for any significant fluctuations over three samples.

The quantitative effect of the input filter is to calculate a filtered Input Value to the PID instruction taken from a defined percentage of the Current Value and the previous two filtered Input Values.

This type of filtering is often called first-order lag filter. It is particularly useful for removing the effects of high frequency noise which may appear on input signals received from sensors.

The greater the filter percentage is set the longer the lag time. When the input filter is set to zero, this effectively removes all filtering and allows the Current Value to be used directly as the Input Value.

Initial values for PID loops

The PID instruction has many parameters which can be set and configured to the user's needs. The difficulty is to find a good point from which to start the fine tuning of the PID loop to the system requirements. The following suggestions will not be ideal for all situations and applications but will at least give users of the PID instruction a reasonable points from which to start.

A value should be given to all the variables listed below before turning the PID instruction ON. Values should be chosen so that the Output Manipulated Value does not exceed \pm 32767. Recommended initial settings:

 T_{S} = Should be equal to the total program scan time or a multiple of that scan time, i.e. 2 times, 5 times, etc.

 $\alpha = 50\%$

 $K_{\mathbf{P}}$ = This should be adjusted to a value dependent upon the maximum corrective action to reach the set point - values should be experimented with from an arbitrary 75%

 T_I = This should ideally be 4 to 10 times greater than the **T**_D time

K_D = 50%

 T_D = This is set dependent upon the total system response, i.e. not only how fast the programmable controller reacts but also any valves, pumps or motors.

For a fast system reaction T_D will be set to a quick or small time, this should however never be less than T_S . A slower reacting system will require the T_D duration to be longer. A beginning value can be T_D twice the value of T_S .

Care should be taken when adjusting PID variables to ensure the safety of the operator and avoid damage to the equipment.

On FX_{2N} MPUs pre-tuning feature is available that can quickly provide initial values for the PID process. Refer to page 10-28 for more details.

With ALL PID values there is a degree of experimentation required to tune the PID loop to the exact local conditions. A sensible approach to this is to adjust one parameter at a time by fixed percentages, i.e. say increasing (or decreasing) the KP value in steps of 10%. Selecting PID parameters without due consideration will result in a badly configured system which does not perform as required and will cause the user to become frustrated. Please remember the PID process is a purely mathematical calculation and as such has no regard for the 'quality' of the variable data supplied by the user/system - the PID will always process its PID mathematical function with the data available.

Example PID Settings

The partial program shown at below demonstrates which parameters must be set for the functioning of the FX2N. The first step sets the user values for S_3+0 to S_3+6 . The PID instruction will be activated when M4 is On.

From the PID instruction at the bottom of the ladder, $S_1 = D200$; $S_2 = D201$; $S_3 = D500$; and D or MV = D525.

	140000					
D500: Ts = 500 ms	M8002			FNC 12 MOV P	K500	D500
D501: Forward Operation, Alarms Not Enabled				FNC 12 MOV P	H0000	D501
D502: Input Filter = 50%			[FNC 12 MOV	K50	D502
D503: K _p = 75%			[FNC 12 MOV P	K75	D503
D504: T _I = 4000 ms			[FNC 12 MOV P	K2000	D504
D505: K _D = 50%			[FNC 12 MOV P	K50	D505
D506: T _D = 1000 ms			[FNC 12 MOV P	K3000	D506
D200: Set Point = 1000	M8002		[FNC 12 MOV P	K 1000	D200
D201: PV _{nf} (an analog input value)	<u>M</u> 1	FNC 79 TO	K2	K1	K4	K4
		FNC 78 FROM	K2	K5	D201	K4
Begin the PID instruction D525: PID Output Value	M4	FNC 88 PID	D200	D201	D500	D525
					·	

MEMO

Applie	d Instruction	S: FX1s FX1N FX2N	FX2NC
1.	FNC 00 - 09	Program Flow	5-4
2.	FNC 10 - 19	Move And Compare	5-16
3.	FNC 20 - 29	Arithmetic And Logical Operations (+, -	, ×, ÷) 5-24
4.	FNC 30 - 39	Rotation And Shift	5-34
5.	FNC 40 - 49	Data Operation	5-42
6.	FNC 50 - 59	High Speed Processing	5-52
7.	FNC 60 - 69	Handy Instructions	5-66
8.	FNC 70 - 79	External FX I/O Devices	5-80
9.	FNC 80 - 89	External FX Serial Devices	5-94
10.	FNC 110-129	Floating Point 1 & 2	5-110
11.	FNC 130-139	Trigonometry (Floating Point 3)	5-118
12.	FNC 140-149	Data Operations 2	5-122
13.	FNC 150-159	Positioning Control	5-126
14.	FNC 160-169	Real Time Clock Control	5-136
15.	FNC 170-179	Gray Codes	5-146
16.	FNC 180-189	Additional Functions	5-146
17.	FNC 220-249	In-line Comparisons	5-150

5.10 Floating Point 1 & 2 - Functions 110 to 129

Contents:									
Floating Point 1 Pa									
ECMP -	Float Compare	FNC 110	5-111						
EZCP -	Float Zone Compare	FNC 111	5-111						
ታንታ -	Not Available	FNC 112 to 117							
EBCD -	Float to Scientific	FNC 118	5-112						
EBIN -	Scientific to Float	FNC 119	5-112						
Floating Point	2								
EADD -	Float Add	FNC 120	5-113						
ESUB -	Float Subtract	FNC 121	5-114						
EMUL -	Float Multiplication	FNC 122	5-114						
EDIV -	Float Division	FNC 123	5-115						
ታንታ -	Not Available	FNC 124 to 126							
ESQR -	Float Square Root	FNC 127	5-115						
አአአ -	Not Available	FNC 128							
INT -	Float to Integer	FNC 129	5-116						

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D_1 , S_3 or for lists/tabled devices D_{3+0} , S_{+9} etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- ななな An instruction operating in 16 bit mode, where ななな identifies the instruction mnemonic.
- $rac{1}{2}rac{1}{2}rac{1}{2}$ A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

5.10.1 ECMP (FNC 110)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Eunction Operands			Program steps	
Whenome Function		S 1	S2	D	Frogram steps	
ECMP FNC 110 (Floating Point Compare)	Compares two floating point values - results of <, = and > are given	K, H - integer va cally converted D - must be in fl format (32bits).	to floating point	Y, M, S Note: 3 consecutive devices are used.	DECMP, DECMPP: 13 steps	

16 BIT OPERATION	32 BIT OPER	ATION	PULSE-P	
	2	result the he indicat S ₂ is le S ₂ is e	ata of S1 is compared to is indicated by 3 bit dev ad address entered as	D. The bit devices D is ON D+1 is ON

Points to note:

The status of the destination devices will be kept even if the ECMP instruction is deactivated. Full algebraic comparisons are used: i.e. -1.79×10^{27} is smaller than 9.43×10^{-15}

5.10.2 EZCP (FNC 111)

FX1S FX1N FX2N FX2NC

Mnemonic	Function		Program steps			
Witemonic	runction	S 1	S 2	S 3	D	i rogram steps
EZCP FNC 111 (Floating Point Zone Compare)	Compares a float range with a float value - results of <, = and > are given	converted t D - must be (32 bits).	er value aut o floating po e in floating p nust be less	pint point format	Y, M, S Note: 3 consecutive devices are used.	DEZCP, DEZCPP: 13 steps

16 BIT OPERATION 32 BIT OPERATION PULSE-P Operation: M8000 [S1][S2][S3][D] The operation is the same as the ECMP instruction ┥┝ DEZCP D50 D60 D100 M50 except that a single data value (S3) is compared to M50 a data range (S1 - S2). D100 < D50,D60 S₃ is less than S₁ and S₂ - bit device D is ON M51 S3 is between S1 and S2 - bit device D+1 is ON D100 D50 D60 S3 is greater than S2 - bit device D+2 is ON M52 D100 > D50,D60

5.10.3 EBCD (FNC 118)

FX1S FX1N FX2N FX2NC

Mnemonic Function		Oper	Program steps	
	T direction	S	D	r rogram steps
(Float to	Converts floating point number format to scientific number format	D - must be in floating point format (32 bits).	D - 2 consecutive devices are used D - mantissa D+1 - exponent.	DEBCD, DEBCDP: 9 steps

32 BIT OPERATION

16	BIT	OPERATION	
10			

PULSE-P

	DEBCD D102 D	0200
-		

Operation:

Converts a floating point value at S into separate mantissa and exponent parts at D and D+1 (scientific format).

Points to note:

- a) The instruction must be double word format. The destinations D and D+1 represent the mantissa and exponent of the floating point number respectively.
- b) To provide maximum accuracy in the conversion the mantissa D will be in the range 1000 to 9999 (or 0) and the exponent D₊₁ corrected to an appropriate value.
- c) E.g. S= 3.4567×10^{-5} will become D= 3456, D+1 = -8

5.10.4 EBIN (FNC 119)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Oper	Program steps	
	i unotion	S	D	r rogram stops
EBIN FNC 119 (Scientific to Float conversion)	Converts scientific number format to floating point number format	D - 2 consecutive devices are used S- mantissa S+1 - exponent.	D - a floating point value (32 bits).	DEBIN, DEBINP: 9 steps

16 BIT OPERATION	32 BIT OPERATION	PULSE-P
	Оре	eration:
X15		nerates a floating poin

Generates a floating point number at D from scientific format data at source S.

Points to note:

- a) The instruction must be double word format. The source data Sand S+1 represent the mantissa and exponent of the floating point number to be generated.
- b) To provide maximum accuracy in the conversion the mantissa S must be in the range 1000 to 9999 (or 0) and the exponent S+1 corrected to an appropriate value.
- c) E.g. S= 5432, S+1 = 12 will become D= 5.432×10^{9}

Zero M8020

Borrow M8021 Carry M8022

5.10.5 EADD (FNC 120)

FX1S FX1N FX2N FX2NC

Flags

Mnemonic Function			Program steps		
	Tunction	S1 S2		D	r rogram steps
EADD FNC 120 (Floating	Adds two floating point numbers together	converted to floating point		D - a floating point value (32 bits).	DEADD, DEADDP: 13 steps
Point Addition)		D - must be in f format (32 bits)	• •	. ,	

16 BIT OPERATION

DEADD K52000 D106 D108

Operation:

The floating point values stored in the source devices S_1 and S_2 are algebraically added and the result stored in the destination device D.

PULSE-P

Points to note:

X07

a) The instruction must use the double word format; i.e., DEADD or DEADDP. All source data and destination data will be double word; i.e. uses two consecutive data registers to store the data (32 bits).

Except for K or H, all source data will be regarded as being in floating point format and the result stored in the destination will also be in floating point format.

- b) If a constant K or H is used as source data, the value is converted to floating point before the addition operation.
- c) The addition is mathematically correct: i.e., 2.3456 \times 10 2 + (-5.6 \times 10 $^{-1})$ = 2.34 \times 10 2
- d) The same device may be used as a source and as the destination. If this is the case then, on continuous operation of the DEADD instruction, the result of the previous operation will be used as a new source value and a new result calculated.
 This will be used as a new source value and a new result calculated.

This will happen every program scan unless the pulse modifier or an interlock program is used.

e) If the result of the calculation is zero "0" then the zero flag, M8020 is set ON.

If the result of the calculation is larger than the largest floating point number then the carry flag, M8021 is set ON and the result is set to the largest value.

If the result of the calculation is smaller than the smallest floating point number then the borrow flag, M8022 is set ON and the result is set to the smallest value.

For more information about the format of floating point number refer to page 4-46.

5.10.6 EAUB (FNC 121)

FX1S FX1N FX2N FX2NC

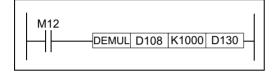
Mnemonic	Function		Program steps		
Witterfiorfic	S1		S2	D	Trogram steps
ESUB FNC 121 (Floating Point Sub-traction)	Subtracts one floating point number from another	K, H - integer v cally converted to flo D - must be in f number format	ating point loating point	D - a floating point value (32 bits).	DESUB, DESUBP: 13 steps

16 BIT OPERATION	6 BIT OPERATION 32 BIT OPERATION		Flags	Zero M8020 Borrow M8021 Carry M8022
X17 DESUB D120	K79124 D128 floatir	ation: oating point value of S₂ is ng point value of S₁and ation device D.		

Points to note:

All points of the EADD instruction apply, except that a subtraction is performed. See page 5-122.

5.10.7 EMUL (FNC 122)


FX1S FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
	runction	S 1	S 2	D	
EMUL FNC 122 (Floating Point Mul- tiplication)	Multiplies two floating point numbers together	K, H - integer v cally converted to flo D - must be in f format (32 bits)	ating point	D - a floating point value (32 bits).	DEMUL, DEMULP: 13 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

The floating point value of S_{1i} s multiplied with the floating point value of S_{2} . The result of the multiplication is stored at D as a floating point value.

PULSE-P

Points to note:

Point a, b, c and d of the EADD instruction apply, except that a multiplication is performed. See page 5-122.

5.10.8 EDIV (FNC 123)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands			Program steps
		S 1	S 2	D	r rogram steps
EDIV FNC 123 (Floating Point Division)	Divides one floating point number by another.	K, H - integer va cally converted to flo D - must be in f format (32 bits)	ating point loating point	D - a floating point value (32 bits).	DEDIV, DEDIVP: 13 steps

16 BIT OPERATION	32 BIT OPERATION	PULSE-P			
 	Operation:				
X10	Tho fl	acting point value of 9			

DEDIV D128 K500 D106

The floating point value of S_1 is divided by the floating point value of S_2 . The result of the division is stored in D as a floating point value. No remainder is calculated.

Points to note:

Points a, b, c, d of the EADD instruction apply, except that a division is performed. See page 5-122.

• If S₂ is 0 (zero) then a divide by zero error occurs and the operation fails.

5.10.9 ESQR (FNC 127)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps	
	Tunction	S	D	r rogram steps
ESQR FNC 127 (Floating Point Square Root)	Calculates the square root of a floating point value.	K, H - integer value automati- cally converted to floating point D - must be in floating point number format (32 bits).	D - a floating point value (32 bits).	DESQR, DESQRP: 9 steps

16 BIT OPERATION	32 BIT OPERA	ATION	PULSE-P	Flags	Zero M8020
	D302 D510 -		ttion: are root is performed of of Sand the result is store		oating poin

Points to note:

Points a, b, c, d of the EADD instruction apply, except that a square root is performed. See page 5-122.

• If S is negative then an error occurs and error flag M8067 is set ON.

5.10.10 INT (FNC 129)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands		Program steps
Whichiofic	T direction	S	D	r rogram steps
INT FNC 129 (Float to Integer)	Converts a number from floating point format to decimal format	D - must be in floating point number format (always 32 bits).	D - decimal format for INT, INTP - 16 bits for DINT, DINTP - 32 bits	INT, INTP: 5 steps DINT, DINTP: 9 steps

16 BIT OPERATION	32 BIT OPERATION	PULSE-P	Flags	Zero M8020 Borrow M8021 Carry M8022
Mas	Opera	ation:		

The floating point value of S is rounded down to the nearest integer value and stored in normal binary format in D.

Points to note:

- a) The source data is always a double (32 bit) word; a floating point value.
 For single word (16 bit) operation the destination is a 16 bit value.
 For double word (32 bit) operation the destination is a 32 bit value.
- b) This instruction is the inverse of the FLT instruction. (See page 5-49)
- c) If the result is 0 then the zero flag M8020 is set ON.
 If the source data is not a whole number it must be rounded down. In this case the borrow flag M8021 is set ON to indicate a rounded value.
 If the resulting integer value is outside the valid range for the destination device then an overflow occurs. In this case the carry flag M8022 is set on to indicate overflow.

Note: If overflow occurs, the value in the destination device will not be valid.

Applied Instructions: FX₁s FX1N FX_{2N} FX2NC **Program Flow** 1. 5-4 FNC 00 - 09 2. Move And Compare 5-16 FNC 10 - 19 Arithmetic And Logical Operations $(+, -, \times, \div)$ 3. FNC 20 - 29 5-24 **Rotation And Shift** 4. 5-34 FNC 30 - 39 5. **Data Operation** 5-42 FNC 40 - 49 6. High Speed Processing FNC 50 - 59 5-52 7. Handy Instructions FNC 60 - 69 5-66 External FX I/O Devices 8. FNC 70 - 79 5-80 9. **External FX Serial Devices** FNC 80 - 89 5-94 10. Floating Point 1 & 2 FNC 110-129 5-110 11. Trigonometry (Floating Point 3) FNC 130-139 5-118 **Data Operations 2** 12. FNC 140-149 5-122 13. **Positioning Control** FNC 150-159 5-126 14. FNC 160-169 Real Time Clock Control 5-136 **Gray Codes** 15. FNC 170-179 5-146 **Additional Functions** 16. FNC 180-189 5-146 In-line Comparisons 17. FNC 220-249 5-150

MITSUBISHI

5.11 Trigonometry - FNC 130 to FNC 139

Contents:

Floating point 3	3		Page
SIN -	Sine	FNC 130	5-119
COS -	Cosine	FNC 131	5-120
TAN -	Tangent	FNC 132	5-120
· ☆☆☆ -	Not Available	FNC 133 to 139	

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant. Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D₁, S₃ or for lists/tabled devices D₃₊₀, S₊₉ etc. MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1. LSB - Least Significant Bit.

Instruction modifications:

- ጵጵጵ An instruction operating in 16 bit mode, where ቴቴቴቴ identifies the instruction mnemonic.
- $rac{1}{2}rac{1}{2}P$ A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

5.11.1 SIN (FNC 130)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands		Program steps
Millenionie	Tunction	S	D	r rogram steps
SIN FNC 130 (Sine)	Calculates the sine of a floating point value	D - must be in floating point number format (32 bits).(radians)	D - a floating point value (32 bits).	DSIN, DSINP: 9 steps

16 BIT OPERATION	32 BIT OPERATION	PULSE-P

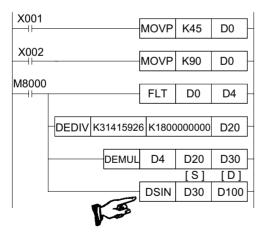
X03				
├ -	DSIN	D510	D314	╞

Contents:

This instruction performs the mathematical SIN operation on the floating point value in S. The result is stored in D.

Points to note:

a) The instruction must use the double word format: i.e., DSIN or DSINP. All source and destination data will be double word; i.e., uses two consecutive data registers to store the data (32 bits).


The source data is regarded as being in floating point format and the destination is also in floating point format.

b) The source value must be an angle between 0 to 360 degrees in radians; i.e.,

 $0^\circ \le S < 360^\circ$

Radian Angles

Below is an program example of how to calculate angles in radians using floating point.

K45 degrees to D0

K90 degrees to D0

Convert D0 to float in D4,D5

Calculate π in radians (π /180) Store as a float in D20,D21 Calculate angle in radians in D30,D31 (deg° × π /180 = rads)

Calculate SIN of angle in D100

5.11.2 COS (FNC 131)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands		Program steps
Mileinoino	i unotion	S	D	r rogram stops
COS FNC 131 (Cosine)	Calculates the cosine of a floating point value	D - must be in floating point number format (32 bits).	D - a floating point value (32 bits).	DCOS, DCOSP: 9 steps

16	BIT	OPE	RAT	ION

32 BIT OPERATION PULSE-P

X04 DCOS D510 D316
--

Contents:

This instruction performs the mathematical COS operation on the floating point value in S. The result is stored in D.

Points to note:

All the points for the SIN instruction apply, except that COS is calculated. See page 5-127.

5.11.3 TAN (FNC 132)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Oper	Program steps	
Mileinoino	i unotion	S	D	r rogram stops
TAN FNC132 (Tangent)	Calculates the tangent of a floating point value	D - must be in floating point number format (32 bits).	D - a floating point value (32 bits).	DTAN, DTANP: 9 steps

16	BIT	OPERATION	

32 BIT OPERATION

X05	DTAN D510 D318
	DTAN_D310 D318

Contents:

This instruction performs the mathematical TAN operation on the floating point value in S. The result is stored in D.

PULSE-P

Points to note:

All the points for the SIN instruction apply, except that COS is calculated. See page 5-127.

Applied Instructions: FX₁s FX1N FX_{2N} FX2NC **Program Flow** 1. 5-4 FNC 00 - 09 2. Move And Compare 5-16 FNC 10 - 19 Arithmetic And Logical Operations $(+, -, \times, \div)$ 3. FNC 20 - 29 5-24 **Rotation And Shift** 4. 5-34 FNC 30 - 39 5. **Data Operation** 5-42 FNC 40 - 49 6. High Speed Processing FNC 50 - 59 5-52 7. Handy Instructions FNC 60 - 69 5-66 External FX I/O Devices 8. FNC 70 - 79 5-80 9. **External FX Serial Devices** FNC 80 - 89 5-94 10. Floating Point 1 & 2 FNC 110-129 5-110 11. Trigonometry (Floating Point 3) FNC 130-139 5-118 12. **Data Operations 2** FNC 140-149 5-122 13. **Positioning Control** FNC 150-159 5-126 14. FNC 160-169 Real Time Clock Control 5-136 **Gray Codes** 15. FNC 170-179 5-146 **Additional Functions** 16. FNC 180-189 5-146 In-line Comparisons 17. FNC 220-249 5-150

Page

5.12 Data Operations 2 - FNC 140 to FNC 149

Contents:

አአአ-	Not Available	FNC 140 to 146	0
SWAP -	Float to Scientific	FNC 147	5-123
አአአ -	Not Available	FNC 148 to 149	

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

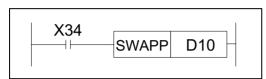
Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- ななな An instruction operating in 16 bit mode, where ななな identifies the instruction mnemonic.
- ポポヤ- A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.


5.12.1 SWAP (FNC 147)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps
	runction	S	Trogram steps
SWAP FNC 147 (Byte Swap) ≁	The high and low byte of the designated devices are exchanged	KnY, KnM, KnS, T, C, D, V, Z	SWAP,SWAPP : 5 steps DSWAP, DSWAPP: 9 steps

16 BIT OPERATION

32 BIT OPERATION

Contents:

The upper byte and the lower byte of the source device are swapped.

PULSE-P

This instruction is equivalent to operation 2 of FNC 17 XCH (see page 5-21).

Points to note:

- a) In single word (16 bit) operation the upper and lower byte of the source device are exchanged.
- b) In double word (32 bit) operation the upper and lower byte of each or the two 16 bit devices are exchanged.

Result of DSWAP(P) D10:

Values are in Hex for clarity		Before DSWAP	After DSWAP
D10	Byte 1	1 F н	8BH
DIU	Byte 2	8BH	1Fн
D11	Byte 1	С4н	35H
DII	Byte 2	35H	С4н

c) If the operation of this instruction is allowed to execute each scan, then the value of the source device will swap back to its original value every other scan. The use of the pulse modifier or an interlock program is recommended.

MEMO

Appli	ed Instructio	ns:	FX1s FX1N FX2M	FX2NC
1.	FNC 00 - 09	Program Flow		5-4
2.	FNC 10 - 19	Move And Compare		5-16
3.	FNC 20 - 29	Arithmetic And Logical C	Operations (+, -,	×, ÷) 5-24
4.	FNC 30 - 39	Rotation And Shift		5-34
5.	FNC 40 - 49	Data Operation		5-42
6.	FNC 50 - 59	High Speed Processing		5-52
7.	FNC 60 - 69	Handy Instructions		5-66
8.	FNC 70 - 79	External FX I/O Devices		5-80
9.	FNC 80 - 89	External FX Serial Devic	es	5-94
10.	FNC 110-129	Floating Point 1 & 2		5-110
11.	FNC 130-139	Trigonometry (Floating F	Point 3)	5-118
12.	FNC 140-149	Data Operations 2		5-122
13.	FNC 150-159	Positioning Control		5-126
14.	FNC 160-169	Real Time Clock Control		5-136
15.	FNC 170-179	Gray Codes		5-146
16.	FNC 180-189	Additional Functions		5-146
17.	FNC 220-249	In-line Comparisons		5-150

Done

5.13 Positioning Control - FNC 150 to FNC 159

Contents:

			i aye
አአአ -	Not Available	FNC 150 to 154	
ABS -	Absolute current value read	FNC 155	5-127
ZRN -	Zero return	FNC 156	5-128
PLSV -	Pulse V	FNC 157	5-129
DRVI -	Drive to increment	FNC 158	5-130
DRVA -	Drive to absolute	FNC 159	5-132

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- ななな An instruction operating in 16 bit mode, where ななな identifies the instruction mnemonic.
- ポポヤ- A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

5.13.1 Cautions when using Positioning Instructions

FX1S FX1N FX2N FX2NC

The following positioning instructions are application instructions that can be used many times in a program.

When designing a program, make sure to follow the cautions outlined below with regard to instruction drive timing.

FNC 156 (ZRN) FNC 157 (PLSV) FNC 158 (DRVI) FNC 159 (DRVA)

- Do not drive positioning instructions which use the same output relay (Y000 or Y001) at the same time. If such instructions are driven at the same time, they will be treated as double coils, and not function correctly.
- Before setting a drive contact ON after is has been set to OFF be sure that the following condition is satisfied;

One or more operation cycles of the 'pulse output monitor (Y000:M8147, Y001:M8148)' must occour after the positioning instruction is turned OFF, before it can be used again. This condition must be met, as one or more OFF operations are required for the redriving of a positioning instruction.

If it is not met, and 'operation error' will occour during the instruction execution.

• Use the Step Ladder Program to correctly set up positioning instructions in conformance to the cautions above.

Caution when using Positioning instructions with FNC 57 (PLSY) & FNC 59 (PLSR)

- Pulse output instructions FNC 57 (PLSY) & FNC 59 (PLSR) use output points Y000 and Y001 in the same way as the positioning instructions described above.
- If a positioning and a pulse output instruction are used in the same operation, the conflicting instructions will be treated as double coils and not function correctly.
- It is recommended to use a FNC 158 (DRVI) instruction in place of either a FNC 57 (PLSY) or FNC 59 (PLSR) instruction to avoid incorrect operation when pulse outputs are required while positioning instructions are being used.

Output terminals Y000 and Y001 are high speed response type

Voltage range : 5 to 24V DC Current range : 10 to 100mA Output frequency : 100kHz or less

5.13.2 Pulse train settings

FX1s FX1N FX2N FX2NC

When a positioning operation is executed from the PLC, the pulse output signal has the 'Pulse train + Sign' format during control, as shown in the figure below.

Pulse output from Y000 -		
Arbitrary output relay YDDD (Specifies the direction.)	ON	OFF
Pulse output from Y001 -		
Arbitrary output relay YDDD (Specifies the direction.)	ON	OFF

Make sure to set the pulse train input mode on the servo amplifier or stepper motor as follows;

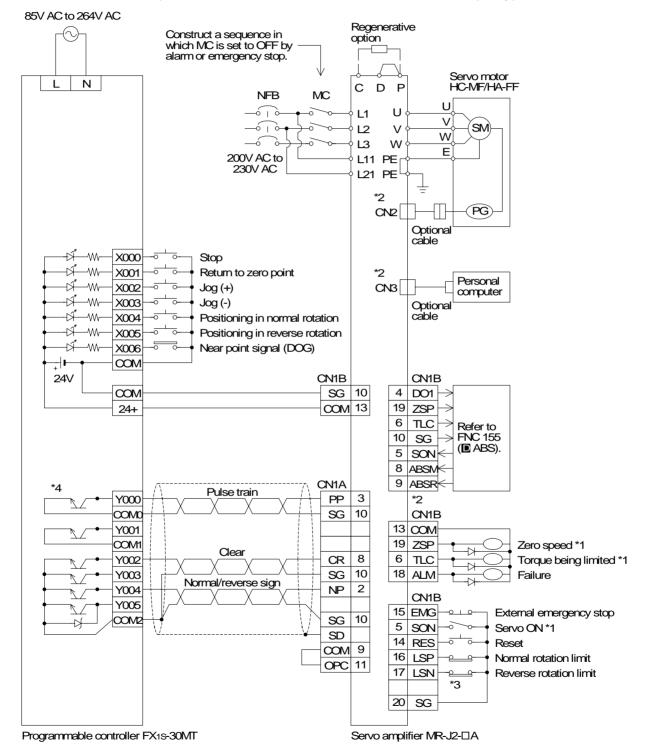
Pulse train input mode: Pulse train + Sign Pulse train logic: negative logic

5.13.3 Devices related to positioning

FX1S FX1N FX2N

FX2NC

Device No.		Data size	lnitial value	Description		
D8140	Lower	001.11		Operates as current value registers of positioning instruction output to Y000 For FNC 157 (PLSV), FNC 158 (DRVI), FNC 159 (DRVA) instructions, current value increases or decreases in accordance		
D8141	Upper	32 bit	0	with direction of rotation. Although FNC 57 (PLSY) and FNC 59 (PLSR) instructions use the same current value registers, the current value represents the accumulating total number of output pulses during instruction execution.		
D8142	Lowe r	32 bit 0		to Y001 For FNC 157 (PLSV), FNC 158 (DRVI), FNC instructions, current value increases or decreases i		Operates as current value registers of positioning instruction output to Y001 For FNC 157 (PLSV), FNC 158 (DRVI), FNC 159 (DRVA) instructions, current value increases or decreases in accordance with direction of rotation.
D8143	Upper			Although FNC 57 (PLSY) and FNC 59 (PLSR) instructions use the same current value registers, the current value represents the accumulating total number of output pulses during instruction execution.		
D81	145	16 bit	0	Bias speed when FNC 156 (ZRN), FNC 158 (DRVI), FNC 159 (DRVA) instructions are executed Set range: 1/10 or less of maximum speed (D8146 & D8147) If the current value exceeds this range, it is automatically set to 1/10 of the maximum speed during operation.		
D8146	Lower	32 bit	100,000	Maximum speed when FNC 156 (ZRN), FNC 158 (DRVI), FNC 159		
D8147 Upper		52 DI	100,000	(DRVA) instructions are executed. Set range 10 to 100,000 (Hz).		
D8148		16 bit	100	Acceleration/Deceleration time in which maximum speed (D8146 & D8147) is achieved from bias speed (D8145) when FNC 156 (ZRN), FNC 158 (DRVI), FNC 159 (DRVA) instructions are executed. Set range 50 to 5,000 (ms)		


Device No.	Attribute	Description
M8145	Drive enable	Y000 pulse output stop command (immediate stop)
M8146	Drive enable	Y001 pulse output stop command (immediate stop)
M8147	Read only flag	Y000 pulse output monitor (BUSY/READY)
M8148	Read only flag	Y001 pulse output monitor (BUSY/READY)

5.13.4 Servo Wiring Example

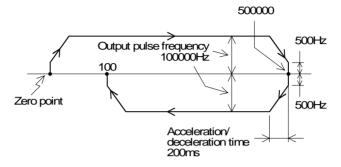
FX1s	FX1N	FX2N	FX2NC
------	------	------	-------

Example of connection to a Mitsubishi MR-J2-*A servo.

Note. The PLC required for this connection is a SINK Transistor output type.

*1 Connect to programmable controller when absolute position detection is required.

- *2 Ports CN1A, CN1B, CN2 & CN3 are the same shape. Do not confuse them.
- *3 Connect a limit switch to the servo amplifier.
- *4 ONLY use a transistor output type PLC.



5.13.5 Example Program

FX1s FX1N FX2N FX2NC

The following example program for forward/reverse operation uses the I/O assignment shown in section 5.13.4 Servo Wiring Example.

During operation positioning is performed using the absolute position method shown below.

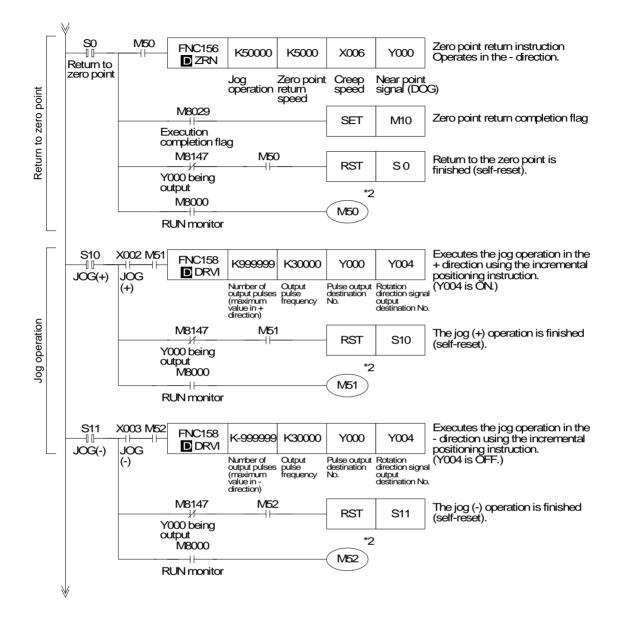
In this example the actual output frequency for the first step, acceleration, and the last step, deceleration, can be obtained using the following expression.

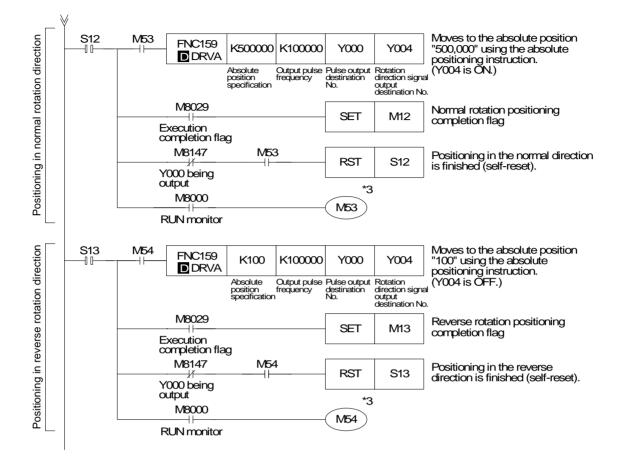
$$\sqrt{A \div (2 \times (C \div 1000))} = Output$$

 $\sqrt{100000 \div (2 \times (200 \div 1000))} = 500 Hz$

A = Maximum speed (D8146, D8147)

B = Acceleration/Deceration time


Step Ladder program.


X000 —⊣∣⊢—— Stop						-M8145	Output to the X-axis (Y000) is stopped.
M8000 RUN monit	tor					-M8140	Return to the zero point with dear signal output is valid.
S0 // Return to zero point	S10 // JOG(+)	S11 // JOG(-)	S12 Fositioning in normal rotation	— - JI — — —	M8145 Y000 output sto	— <u>M5</u>	Operation is stopped.
M8002 Initial pulse	e		*1	FNC 12 MOV	K100000	D8146	Sets the maximum speed. 100,000 (Hz) \rightarrow D8147 and D8146
/			*1	FNC 12 MOV	K200	D8148	Sets the acceleration/ deceleration time. 200 (ms) \rightarrow D8148

*1 When the maximum speed or Acceleration/deceleration do not have to be changed from their initial values, programming is not required.

Υ			
X001 M5	RST	M10	Resets the zero point return completion flag.
zero point being stopped	RST	M12	Resets the normal rotation positioning completion flag.
	RST	M13	Resets the reverse rotation positioning completion flag.
	SET	SO	Drives the zero point return state (S0).
X002 M5 	RST	M12	Resets the normal rotation positioning completion flag.
*2 being stopped	RST	M13	Resets the reverse rotation positioning completion flag.
	SET	S10	Drives the jog (+) state (S10).
X003 M5 	RST	M12	Resets the normal rotation positioning completion flag.
*2 [°] being stopped	RST	M13	Resets the reverse rotation positioning completion flag.
	SET	S11	Drives the jog (-) state (S11).
X004 M5 M10 ↑↑ ↓ ↓ ↓ ↓ Positioning Operation Zero point	RST	M12	Resets the normal rotation positioning completion flag.
in normal being return rotation stopped completion flag	RST	M13	Resets the reverse rotation positioning completion flag.
	SET	S12	Drives the normal rotation positioning state (S12).
X005 M5 M10	RST	M12	Resets the normal rotation positioning completion flag.
in reverse being return rotation stopped completion flag	RST	M13	Resets the reverse rotation positioning completion flag.
↓	SET	S13	Drives the reverse rotation positioning state (S13).

*2 The maximum size of a JOG command is 999,999 pulses, as this is the maximum number of output pulses for a FNC 158 (DRVI) instruction. If a greater distance is required execute more than one JOG command.

*3 The instruction drive timing is delayed by one opeation cycle to prevent simultaneous driving of positioning instructions.

5.13.6 ABS (FNC 155)

FX1s | FX1N | FX2N | FX2NC

Mnemonic	Function	Operands			Program steps
Witemonic	runction	S	D ₁	D ₂	Frogram steps
ABS FNC 155 Absolute current value read	Reads the absolute position from a servo motor	X,Y,M,S	Y,M,S	T,C,D,V,Z	DABS 13 steps

16 BIT OPERATION

32 BIT OPERATION PULSE-P

мо		[S]	[D1]	[D2]	
┝──┤┝──	DABS	X000	Y004	D8140	

Operation:

This instruction reads the absolute position data when a Mitsubishi servo motor, MR-H or MR-J2, equipped with absolute positioning function is connected. [S] is the first of three inputs used for communication flags (see drawing below), $[D_1]$ is

the first of three communication outputs and $[D_2]$ is the data destination register.

Points to note:

a)This instruction is 32-Bit. Be sure to input as "DABS"

b)Read starts when the instruction drive contact turns ON. When the read is complete, the execution complete flag M8029 is energized.

If the instruction drive contact is turned OFF during read, read is aborted.

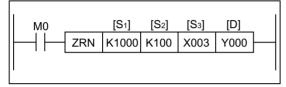
- c)When designing a system, set the servo amplifier to be ON earlier than the power of the PLC, or so that they are both powered ON at the same time.
- d)The device [D₂] to which the absolute value is read, can be set within a word device range. However, the absolute value should be transferred at some point to the correct registers (D8141 & D8140)
- e)The DABS instruction drive contact uses an input which is always ON, even after the absolute value is read.

If the instruction drive contact turns OFF after the read is complete, the servo ON (SON) signal will turn OFF and the operation disabled.

f)Even if the servo motor is equipped with an absolute position detection function, it is good practice to execute a zero return operation during initial system set up.

FX1S-30MT		CN1	MR-H-A		CN1	MR-J2-A
x000 ↓ × × × × × × × × × × × × × × × × × × ×	ABS (bit 0) ABS (bit 1)	PF ZSP	24 23	X000 ← X001 ←	D01 ZSP	4
	Send Data Ready Flag	TLC	25 16	X002 ← COM ←	TLC SG	6 10
+ 24V Y004 Y005 Y006 COM4	Servo On ABS Data Forwarding Mode ABS Data Request	SON D13 D14	44	I H	SON ABSM ABSR	12 44 45

5.13.7 ZRN (FNC 156)


FX1S FX1N FX2N FX2NC

Mnemonic	Function		Оре	Brogram stops		
Milemonic	Function	S ₁	S ₂	S ₃	D	Program steps
ZRN FNC 156 Zero return	Return to zero home point after machine ON or initial setting.	K,H,KnX,k KnM,KnS T,C,D,V,Z	·	X,Y, M,S	Y Note: ⊠ Y000 or Y001 only	ZRN: 9 steps DZRN: 17 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

Contents:

When executing incremental or absolute positioning, the PLC stores the current position values which increase or decrease during operation.

Using these values, the PLC always knows the machine position. However when the power to the PLC is turned off, this data is lost. To cope with this the machine should return to the zero point when the power is turned ON, or during initial set up, to teach the zero position.

 $[S_1]$ is the Zero Return Speed, $[S_2]$ is the Creep Speed, $[S_3]$ is the Near Point Signal, and [D] is the Pulse Output Designation.

Points to note:

a)Users may specify zero return speed [S₁] as, 16-bit 10 to 32,767Hz or 32-bit 10 to 100kHz.

b)Users may specify the creep speed [S₂] of 10 to 32,767Hz

c)If any device other than an input relay (X) is specified for the Near point signal [S3] it will be affected by the operation cycle of the PLC and the dispersion of the zero point may be large.

d)Only Y000 or Y001 can be used for the pulse output [D].

Because of the nature of the high speed output, transistor type output units should be used with this instruction. Relay type outputs will suffer a greatly reduced life, and will cause false outputs to occur.

To ensure a 'clean' output signal when using transistor type units, the load current should be 200mA or higher with the FX2N Series. The load current should be 10 - 100mA with the FX1S/ 1N Series. It may be necessary to use 'pull up' resistors.

e)If M8140 is set to ON, the clear signal is sent to the servo motor when the return to zero point is complete.

f)Related device numbers.

D8141 (upper digit) & D8140 (lower digit) : Current value register of Y000 (32-bit)

D8143 (upper digit) & D8142 (lower digit) : Current value register of Y001 (32-bit)

D8147 (upper digit) & D8146 (lower digit) : Maximum speed when FNC156, FNC158 or FNC159 are executed 100~100,000Hz.

D8148 : Acceleration/Deceleration time adopted when FNC156, FNC158 or FNC159 are executed.

M8145 : Y000 pulse output stop (immediate)

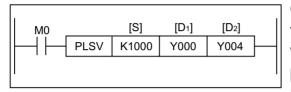
M8146 : Y001 pulse output stop (immediate)

M8147 : Y000 pulse output monitor (BUS/READY)

M8148 : Y001 pulse output monitor (BUS/READY)

g)When a Mitsubishi MR-H or MR-J2 servo amplifier equipped with absolute position detection function is used, the current position of the servo can be read by FNC 155 (ABS).

- Dog search function is not supported. Start zero return from the front side of the Near point signal.
- Attention should be paid to the instruction drive timing.


5.13.8 PLSV(FNC157)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands			Program steps
Milenonie	Tunction	S	D1	D2	i rogram steps
PLSV FNC 157 Pulse V	Variable speed pulse output	K,H, KnX,KnY, KnM,KnS	Y Note: ⊠ Y000 or	Y,M,S	PLSV 9 steps DPLSV
		T,C,D,V,Z	Y001 only		17 steps

16 BIT OPERATION

32 BIT OPERATION

Operation:

This is a variable speed output pulse instruction, with a rotation direction output.

PULSE-P

[S] is the Pulse Frequency, $[D_1]$ is the Pulse Output Designation, and $[D_2]$ is the Rotation Direction Signal.

Points to note:

a)Users may use output pulse frequencies $[S_1]$ of, 16-bit 10 to 32,767Hz or 32-bit 10 to 100kHz.

b)Only Y000 or Y001 can be used for the pulse output [D₁].

Because of the nature of the high speed output, transistor type output units should be used with this instruction. Relay type outputs will suffer a greatly reduced life, and will cause false outputs to occur.

To ensure a 'clean' output signal when using transistor type units, the load current should be 200mA or higher with the FX2N Series. The load current should be 10 - 100mA with the FX1S/ 1N Series. It may be necessary to use 'pull up' resistors.

c)Rotation direction signal output [D2} operated as follows: if $[D_2] = OFF$, rotation = negative, if $[D_2] = ON$, rotation = positive.

d)The pulse frequency [S] can be changed even when pulses are being output.

e)Acceleration/deceleration are not performed at start/stop. If cushion start/stop is required, increase or decrease the output pulse frequency [S] using the FNC67 RAMP instruction.

f)If the instruction drive contact turns off while pulses are output, the machine stops without deceleration

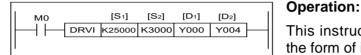
g)Once the instruction drive contact is off, re-drive of the instruction is not possible while the pulse output flag (Y000 : [M8147] Y001 : [M8148]) is ON.

h)The normal or reverse direction is specified by the positive or negative sign of the output pulse frequency [S]

i)Related device numbers.

D8141 (upper digit) & D8140 (lower digit) : Current value register of Y000 (32-bit) D8143 (upper digit) & D8142 (lower digit) : Current value register of Y001 (32-bit) M8145 : Y000 pulse output stop (immediate) M8146 : Y001 pulse output stop (immediate) M8147 : Y000 pulse output monitor (BUS/READY) M8148 : Y001 pulse output monitor (BUS/READY)

• Attention should be paid to the instruction drive timing.


5.13.9 DRVI (FNC 158)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands				Brogram stops
WITEITIOTTIC	Function	S ₁	S ₂	D ₁	D ₂	Program steps
DRVI FNC 158 Drive to increment	Increment positioning	K,H, KnX,KnY, KnM,KnS T,C,D,V,Z	i	Y Note: ⊠ Y000 or Y001 only	Y,M,S	DRVI 9 steps DDRVI 17 steps

16 BIT OPERATION

32 BIT OPERATION PULSE-P

This instruction is for single speed positioning in the form of incremental movements.

 $[S_1]$ is the Number of Pulses, $[S_2]$ is the Pulse Output Frequency, $[D_1]$ is the Pulse Output Designation, and $[D_2]$ is the Rotation Direction Signal.

Points to note:

a)The maximum number of pulses $[S_1]$ available are: 16-bit -32,768 to 32,767 pulses or 32-bit -999,999 to 999,999 pulses.

b)Users may use output pulse frequencies [S₂], 16-bit 10 to 32,767Hz or 32-bit 10 to 100kHz.

c)Only Y000 or Y001 can be used for the pulse output [D₁].

Because of the nature of the high speed output, transistor type output units should be used with this instruction. Relay type outputs will suffer a greatly reduced life, and will cause false outputs to occur.

To ensure a 'clean' output signal when using transistor type units, the load current should be 200mA or higher with the FX2N Series. The load current should be 10 - 100mA with the FX1S/ 1N Series. It may be necessary to use 'pull up' resistors.

d)Rotation direction signal output $[D_2]$ operated as follows: if $[D_2] = OFF$, rotation = negative, if $[D_2] = ON$, rotation = positive.

e)If the contents of an operand are changed while the instruction is executed, it is not reflected on the operation. The new contents become effective when the instruction is next driven.

f)If the instruction drive contact turns off while the instruction is being executed, the machine decelerates and stops. At this time the execution complete flag M8029 does not turn ON.

g)Once the instruction drive contact is off, re-drive of the instruction is not possible while the pulse output flag (Y000 : [M8147], Y001 : [M8148]) is ON.

h)For operation in the incremental drive method, the travel distance from the current position is specified with either a positive or a negative symbol.

i)The minimum value of output pulse frequency which can be actually used is determined by the following equation

 $\sqrt{MaxSpeed[D8147,D8146]Hz} \div (2 \times (Acceleration \setminus Deceleration [D8148]ms \div 1000))}$

f)Related device numbers.

D8145 : Bias speed adopted when either FNC158, DRVI or FNC159, DRVA are executed D8147 (upper digit) & D8146 (lower digit) : Maximum speed when FNC156, FNC158 or FNC159 are executed 100~100,000Hz.

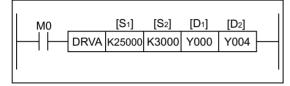
D8148 : Acceleration/Deceleration time adopted when FNC156, FNC158 or FNC159 are executed.

M8145 : Y000 pulse output stop (immediate) M8146 : Y001 pulse output stop (immediate) M8147 : Y000 pulse output monitor (BUS/READY)

M8148 : Y001 pulse output monitor (BUS/READY)

• Attention should be paid to the instruction drive timing.

5.13.10 DRVA(FNC 159)


FX1S FX1N FX2N FX2NC

Mnemonic	Function		Оре	Brogram stops		
whemonic	Function	S ₁	S ₂	D ₁	D ₂	Program steps
DRVA	Absolute	K,H,		Y	Y,M,S	DRVA
FNC 159	positioning	KnX,KnY,		Note: 🖂		9 steps
Drive to		KnM,KnS		Y000 or		DDRVA
absolute		T,C,D,V,Z		Y001 only		17 steps

32 BIT OPERATION

16 BIT OPERATION

PULSE-P

Operation:

This instruction is for single speed positioning using a zero home point and absolute measurements.

 $[S_1]$ is the Number of Pulses, $[S_2]$ is the Output

Frequency, [D₁] is the Pulse Output Designations, and [D₂] is the Rotation Direction Signal.

Points to note:

a)The target position for absolute positioning $[S_1]$ can be: 16-bit -32,768 to 32,767 pulses or 32-bit -999,999 to 999,999 pulses.

b)Users may use output pulse frequencies [S₂], 16-bit 10 to 32,767Hz or 32-bit 10 to 100kHz.

c)Only Y000 or Y001 can be used for the pulse output $[D_1]$.

Because of the nature of the high speed output, transistor type output units should be used with this instruction. Relay type outputs will suffer a greatly reduced life, and will cause false outputs to occur.

To ensure a 'clean' output signal when using transistor type units, the load current should be 200mA or higher with the FX2N Series. The load current should be 10 - 100mA with the FX1S/ 1N Series. It may be necessary to use 'pull up' resistors.

d)Rotation direction signal output $[D_2]$ operated as follows: if $[D_2] = OFF$, rotation = negative, if $[D_2] = ON$, rotation = positive.

e)If the contents of an operand are changed while the instruction is executed, it is not reflected on the operation. The new contents become effective when the instruction is next driven.

f)If the instruction drive contact turns off while the instruction is being executed, the machine decelerates and stops. At this time the execution complete flag M8029 does not turn ON.

g)Once the instruction drive contact is off, re-drive of the instruction is not possible while the pulse output flag (Y000 : [M8147], Y001 : [M8148]) is ON.

h)For operation in the absolute drive method, the travel distance from the zero point is specified.

i)The minimum value of output pulse frequency which can be actually used is determined by the following equation

 $\sqrt{MaxSpeed[D8147,D8146]Hz} \div (2 \times (Acceleration \setminus Deceleration [D8148]ms \div 1000))$

f)Related device numbers.

D8145 : Bias speed adopted when either FNC158, DRVI or FNC159, DRVA are executed D8147 (upper digit) & D8146 (lower digit) : Maximum speed when FNC156, FNC158 or FNC159 are executed 100~100,000Hz.

D8148 : Acceleration/Deceleration time adopted when FNC156, FNC158 or FNC159 are executed.

M8145 : Y000 pulse output stop (immediate) M8146 : Y001 pulse output stop (immediate) M8147 : Y000 pulse output monitor (BUS/READY) M8148 : Y001 pulse output monitor (BUS/READY)

• Attention should be paid to the instruction drive timing.

Memo

Applied Instructions: FX₁s FX1N FX_{2N} FX2NC 1. **Program Flow** 5-4 FNC 00 - 09 Move And Compare 2. 5-16 FNC 10 - 19 Arithmetic And Logical Operations (+, -, \times , \div) 3. FNC 20 - 29 5-24 **Rotation And Shift** 4. 5-34 FNC 30 - 39 **Data Operation** 5. FNC 40 - 49 5-42 **High Speed Processing** 6. FNC 50 - 59 5-52 7. Handy Instructions FNC 60 - 69 5-66 External FX I/O Devices 8. FNC 70 - 79 5-80 **External FX Serial Devices** 9. FNC 80 - 89 5-94 10. Floating Point 1 & 2 FNC 110-129 5-110 11. Trigonometry (Floating Point 3) FNC 130-139 5-118 **Data Operations 2** 12. FNC 140-149 5-122 **Positioning Control** 13. FNC 150-159 5-126 **Real Time Clock Control** 14. FNC 160-169 5-136 15. **Gray Codes** FNC 170-179 5-146 16. FNC 180-189 Additional Functions 5-146 **In-line Comparisons** 17. FNC 220-249 5-150

🙏 MITSUBISHI

5.14 Real Time Clock Control - FNC 160 to FNC 169

Contents:

			Page
TCMP -	Time Compare	FNC 160	5-137
TZCP -	Time Zone Compare	FNC 161	5-138
TADD -	Time Add	FNC 162	5-139
TSUB -	Time Subtract	FNC 163	5-140
አአአ-	Not Available	FNC 164 to 165	
TRD -	Read RTC data	FNC 166	5-141
TWR -	Set RTC data	FNC 167	5-142
አአአ-	Not Available	FNC 168	
HOUR -	Hour meter	FNC 169	5-143

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D_1 , S_3 or for lists/tabled devices D_{3+0} , S_{+9} etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- かかか An instruction operating in 16 bit mode, where かかか identifies the instruction mnemonic.
- $rac{h}{h}rac{h}{h}P$ A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

5.14.1 TCMP (FNC 160)

FX1s FX1N FX2N FX2NC

Mnemonic	Function			Program steps			
Whichloric	T unction	S 1	S 2	S 3	S	D	r rogram steps
TCMP	Compares two	К, Н,		-	T, C, D	Y, M, S	TCMP,
FNC 160 (Time Compare)	times - results of <, = and > are given	KnX, KnY T, C, D, V, Z	/, KnM, Kr	ıS,	Note: 3 consec devices a	cutive are used.	TCMPP: 11 steps

16 BIT OPERATION

Contents:

S1, S2 and S3 represent hours, minutes and seconds respectively. This time is compared to the time value in the 3 data devices specified by the head address S. The result is indicated in the 3 bit devices specified by the head address D.

PULSE-P

The bit devices in D indicate the following:

 D_{+0} is set ON, when the time in S is less than the time in S₁, S₂ and S₃.

 D_{+1} is set ON, when the time in S is equal to the time in S₁, S₂ and S₃.

 D_{+2} is set ON, when the time in S is greater than the time in S₁, S₂ and S₃.

Points to note:

a) The status of the destination devices is kept, even if the TCMP instruction is deactivated.

b) The comparison is based on the time value specified in the source devices.

- The valid range of values for S1 and S+0 is 0 to 23 (Hours).
- The valid range of values for S2 and S+1 is 0 to 59 (Minutes).

32 BIT OPERATION

- The valid range of values for S3 and S+2 is 0 to 59 (Seconds).
- c) The current time of the real time clock can be compared by specifying D8015 (Hours), D8014 (Minutes) and D8013 (Seconds) as the devices for S1, S2 and S3 respectively.

5.14.2 TZCP (FNC 161)

X10

FX_{1S} FX1N FX2N FX2NC

Mnemonic	Function		Program steps			
Witternottic	T unction	S 1	S 2	S	D	Trogram steps
TZCP FNC 161	Compares a time to a specified time		less than or	equal to S ₂ .	Y, M, S	TZCP, TZCPP:
(Time Zone Compare)	range - results of <, = and > are given	Note: 3 con	secutive dev	/ices are use	ed for all	9 steps

16 BIT OPERATION

32 BIT OPERATION

by the head address D.

PULSE-P Contents: S1, S2 and S represent time values. Each specifying the head address of 3 data devices. S is compared to the time period defined by S1 and S2. The result is indicated in the 3 bit devices specified

The bit devices in D indicate the following:

M1 ON when D20,D21,D22 D0,D1,D2 D30,D31,D32

[S1] [S2] [S] [D]

_____O___ ON when D0,D1,D2 < D20,D21,D22

M2____ON when D30,D31,D32 < D0,D1,D2

TZCP D20 D30 D0 M15

D+0 is set ON, when the time in S is less than the times in S1 and S2.

D+1 is set ON, when the time in S is between the times in S1 and S2.

D+2 is set ON, when the time in S is greater than the times in S1 and S2.

Points to note:

a) The status of the destination devices is kept, even if the TCMP instruction is deactivated.

b) The comparison is based on the time value specified in the source devices.

- The valid range of values for S1 and S+0 is 0 to 23 (Hours).
- The valid range of values for S2 and S+1 is 0 to 59 (Minutes).
- The valid range of values for S3 and S+2 is 0 to 59 (Seconds).

5.14.3 TADD (FNC 162)

FX_{1S} FX1N FX_{2N} FX2NC

Mnemonic	Function		Operands					
Winchiofile	i unction	S 1	S2	D	Program steps			
TADD FNC 162	Adds two time values together to	T, C, D	•		TADD, TADDP:			
(Time Addition)	give a new time		itive devices are u and seconds res	used to represent spectively.	7 steps			

16 BIT OPERATION		32 BIT OPERATION	PULSE-P	Flags	Zero M8020 Carry M8022		
Contents:							

∣ X13	[S1][S2][D]					
	TSUB	D10	D20	D30		

Each of S1, S2 and D specify the head address of 3 data devices to be used a time value.

The time value in S1 is added to the time value in S₂, the result is stored to D as a new time value.

Points to note:

a) The addition is performed according to standard time values. Hours, minutes and seconds are kept within correct limits. Any overflow is correctly processed.

S1		S2		D
D10: 10 hours		D20: 30 hours		D30: 13 hours
D11: 30 mins		D21: 10 mins		D31: 41 mins
D12: 27 secs	+	D22: 49 secs	=	D32: 16 secs
10:30:29		03:10:49		13:41:16

b) If the addition of the two times results in a value greater than 24 hours, the value of the result is the time remaining above 24 hours.

When this happens the carry flag M8022 is set ON.

- c) If the addition of the two times results in a value of zero (0:00:00: 0 hours, 0 minutes, 0 seconds) then the zero flag M8020 is set ON.
- d) The same device may be used as a source (S1 or S2) and destination device. In this case the addition is continually executed; the destination value changing each program scan. To prevent this from happening, use the pulse modifier or an interlock program.

5.14.4 TSUB (FNC 163)

FX1S FX1N FX2N FX2NC

Mnemonic	Function		Program steps		
Whichloric	i unction	S 1	S 2	D	r rogram steps
TSUB FNC 163 (Time Subtrac- tion)	Subtracts one time value from another to give a new time	T, C, D Note: 3 consec	utive devices are	e used.	TSUB, TSUBP: 7 steps

16 BIT OPERATION	32 BIT OPERATION	PULSE-P	Flags	Zero M8020 Borrow M8021			
Contents:							

[S1] [S2] [D]TSUB D10 D20 D30Each of S1, S2 and D specify the head address of 3 data devices to be used a time value.

The time value in S_1 is subtracted from the time value in S_2 , the result is stored to D as a new time value.

Points to note:

X13

a) The subtraction is performed according to standard time values. Hours, minutes and seconds are kept within correct limits. Any underflow is correctly processed.

S1		S2		D
D10: 10 hours		D20: 3 hours		D30: 7 hours
D11: 30 mins		D21: 10 mins		D31: 19 mins
D12: 27 secs	-	D22: 49 secs	=	D32: 38 secs
10:30:27		03:10:49]	07:19:38

b) If the subtraction of the two times results in a value less than 00:00:00 hours, the value of the result is the time remaining below 00:00:00 hours.

S1		S2		D
D10: 10 hours		D20: 18 hours]	D30: 13 hours
D11: 17 mins		D21: 12 mins]	D31: 41 mins
D12: 29 secs	-	D22: 34 secs	=	D32: 16 secs
10:17:29		18:12:34		16:04:55
			-	M8021 ON

When this happens the borrow flag M8021 is set ON.

- c) If the subtraction of the two times results in a value of zero (00:00:00 hours) then the zero flag M8020 is set ON.
- d) The same device may be used as a source (S1 or S2) and destination device. In this case the subtraction is continually executed; the destination value changing each program scan. To prevent this from happening, use the pulse modifier or an interlock program.

5.14.5 TRD (FNC 166)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps
	i unotion	D	i rogram stops
TRD FNC 166 (Time Read)	Reads the current value of the real time clock to a group of registers	T, C, D Note: 7 consecutive devices are used.	TRD, TRDP: 5 steps

16 BIT OPERATION

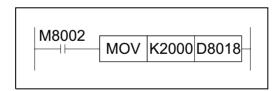
32 BIT OPERATION PULSE-P

the head address D.

Contents:

M34		[D]	
	TRD	D12	

The 7 devices are set as follows:


Device	Meaning	Values
D8018	Year	00-99
D8017	Month	01-12
D8016	Date	01-31
D8015	Hours	00-23
D8014	Minutes	00-59
D8013	Seconds	00-59
D8019	Day	0-6 (Sun-Sat)

Device	Meaning
D+0	Year
D+1	Month
D+2	Date
D+3	Hours
D+4	Minutes
D+5	Seconds
D+6	Day

The current time and date of the real time clock are read and stored in the 7 data devices specified by

Points to note:

The year is read as a two digit number. This can be change to a 4 digit number by setting D8018 to 2000 during the first program scan; see following program extract.

If this is done then the clock year should not be used during the first scan as it will be a two digit number before the instruction and a value of 2000 after the instruction until the END instruction executes. After the first scan the year is read and written as a 4 digit number.

5.14.6 TWR (FNC 167)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Operands	Program steps
	i dilotion	S	i rogram stops
TWR FNC 167 (Time Write)	Sets the real time clock to the value stored in a group of registers	T, C, D Note: 7 consecutive devices are used.	TWR, TWRP: 5 steps

16 BIT OPERATION

32 BIT OPERATION

M34		[S]	_
	TWR	D20	

Contents:

ή ή ή ή ή ή ή

The 7 data devices specified with the head address S are used to set a new current value of the real time clock.

PULSE-P

The seven devices

Device	Meaning	Values
S+0	Year	00-99
S+1	Month	01-12
S+2	Date	01-31
S+3	Hours	00-23
S+4	Minutes	00-59
S+5	Seconds	00-59
S+6	Day	0-6 (Sun-Sat)

Device	Meaning
D8018	Year
D8017	Month
D8016	Date
D8015	Hours
D8014	Minutes
D8013	Seconds
D8019	Day

Points to note:

This instruction removes the need to use M8015 during real time clock setting. When setting the time it is a good idea to set the source data to a time a number of minutes ahead and then drive the instruction when the real time reaches this value.

5.14.7 Hour (FNC 169)

FX1S | FX1N | FX2N | FX2NC

Mnomonio	Function		Operands		Drogram stops
Mnemonic	Function	S	D ₁	D ₂	Program steps
Hour FNC 169 Hour meter	Hour meter	K,H, KnX, KnY, KnM, KnS, T,C,D,V,Z		Z,Y, M,S	

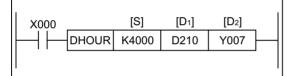
16 BIT OPERATION

X000		[S]	[D1]	[D2]	
- -	DHOUR	K300	D200	Y005	<u> </u>

Operation 1: 16 bit instruction

PULSE-P

[S] = Period of time before $[D_2]$ turns on (Hrs)


 $[D_1] = Current value in Hours$

 $[D_1]+1 = Current value, if less than 1 hour, time is specified in seconds.$

 $[D_2]$ = Alarm output destination, turns on when $[D_1]$ exceeds [S]

In the above example, $[D_2]$ turns on at 300 hours and 1 second.

32 BIT OPERATION

Operation 2: 32 bit instruction

[S] = Period of time in which $[D_2]$ turns on (Hrs)

[D₁] = Current value in Hours

 $[D_1]+2 = Current value, if less than 1 hour. In seconds$

 $[D_2]$ = Alarm output destination, when $[D_1]$ exceeds [S]

In the above example, [D₂] turns on at 4000 hours and 1 second.

Points to note:

a)In order to continuously use the current value data, even after a power OFF and ON, specify a data register which is backed up against power interruption.

b)The hour meter will continue operation even after the alarm output $[D_2]$ turns ON.

Operation will stop when the value of $[D_1]$ reaches the maximum for the specified 16 or 32 bit operation.

If continuous operation id required, clear the value stored in $[D_1]$ to $[D_1]+1$ (16-bit) and $[D_1]$ to $[D_1]+2$ (32-bit).

Memo

Applied Instructions: FX₁s FX1N FX_{2N} FX2NC **Program Flow** 1. 5-4 FNC 00 - 09 2. Move And Compare 5-16 FNC 10 - 19 Arithmetic And Logical Operations $(+, -, \times, \div)$ 3. FNC 20 - 29 5-24 **Rotation And Shift** 4. 5-34 FNC 30 - 39 5. **Data Operation** 5-42 FNC 40 - 49 6. High Speed Processing FNC 50 - 59 5-52 7. Handy Instructions FNC 60 - 69 5-66 External FX I/O Devices 8. FNC 70 - 79 5-80 9. **External FX Serial Devices** FNC 80 - 89 5-94 10. Floating Point 1 & 2 FNC 110-129 5-110 11. Trigonometry (Floating Point 3) FNC 130-139 5-118 12. **Data Operations 2** FNC 140-149 5-122 13. FNC 150-159 **Positioning Control** 5-126 14. FNC 160-169 Real Time Clock Control 5-136 **Gray Codes** 15. FNC 170-179 5-146 **Additional Functions** 16. FNC 180-189 5-146 **In-line Comparisons** 17. FNC 220-249 5-150

5.15 Gray Codes - FNC 170 to FNC 179

Contents:

			Page
GRY -	Decimal to Gray Code	FNC 170	5-147
GBIN -	Gray Code to Decimal	FNC 171	5-147
አአአ -	Not Available	FNC 172 to 175	
RD3A -	Read FX0N-3A	FNC 176	5-148
WR3A -	Write to FX0N-3A	FNC 177	5-148

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D1, S3 or for lists/tabled devices D3+0, S+9 etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- ななな An instruction operating in 16 bit mode, where ななな identifies the instruction mnemonic.
- $rac{1}{2}rac{1}{2}P$ A 16 bit mode instruction modified to use pulse (single) operation.
- D \Rightarrow \Rightarrow An instruction modified to operate in 32 bit operation.
- D☆☆☆P A 32 bit mode instruction modified to use pulse (single) operation.
- + A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

5.15.1 GRY (FNC 170)

FX1s FX2NC FX1N FX2N

Mnemonic	Function	Operands		Program steps
Mileinoino	i unotion	S	D	r rogram stops
GRY FNC 170 (Gray Code)	Calculates the gray code value of an integer	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z	KnY, KnM, KnS, T, C, D, V, Z	GRY,GRYP: 5 steps DGRY,DGRYP 9 steps

16 BIT OPERATION	32 BIT OPERA	ATION	PULSE-P
M45 GRY	[S] [D] 1234K3Y10		ition: inary integer value in CODE equivalent and

n S is converted to the d stored at D.

Points to Note:

The nature of gray code numbers allows numeric values to be quickly output without the need for a strobing signal. For example, if the source data is continually incremented, the new output data can be set each program scan.

5.15.2 GBIN (FNC 171)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands		Program steps	
Whichloric	T direction	S	D		
GBIN FNC 171 (Gray Code)	Calculates the integer value of a gray code	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z	KnY, KnM, KnS, T, C, D, V, Z	GBIN,GBINP: 5 steps DGBIN, DGBINP: 9 steps	

16 BIT OPERATION	32 BIT OPERA	ATION	PULSE-P
T24 GBIN	[S] [D] K3X20 D10		ition: RAY CODE value I binary equivalent a

The GRAY CODE value in S is converted to the normal binary equivalent and stored at D.

Points to Note:

This instruction can be used to read the value from a gray code encoder.

If the source is set to inputs X0 to X17 it is possible to speed up the reading time by adjusting the refresh filter with FNC 51 REFF.

5.15.3 RD3A (FNC 176)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Operands		Program steps	
	i unotion	M1	M2	D	r rogram stops
RD3A FNC 176 Read analog block		K,H. KnX, KnY,K T,C,D,V,Z	ínM,KnS,	KnY, KnM,KnS T.C,D,V,Z	RD3A 7 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

X000	[M1]	[M2]	[D]	_
RD3A	K0	K1	D0	

Operation:

This instruction reads the analog input value of the FX_0N-3A or FX_2N-2AD block.

 $[M_1]$ = Special block number, K0 to K7

 $[M_2]$ = Analog input channel number, K1/K21 or K2/K22 [D] = Read data

Points to note:

Adjustment of the FX_{0N}-3A or FX_{2N}-2AD analog block characteristics should be completed in advance of using this instruction. For guidance please see the relevant manual.

For the FX_{0N}-3A, K1 = Channel 1, K2 = Channel 2. For the FX_{2N}-2AD, K21 = Channel 1, K22 = Channel 2 D = 0~255(8 bit)

 $D = 0 \sim 4095(12bit)$

FX1N series can only communicate with the FX0N-3A

5.15.4 WR3A (FNC 177)

FX1s FX1N FX_{2N} FX2NC

Mnemonic	monic Function Operands			Program steps	
	i unotion	M1	M2	S	r rogram steps
WR3A FNC 177 Write to Analog block	Write data to analog block FX0N-3A, FX2N- 2AD, FX2N-2DA	K,H. KnX, KnY,K T,C,D,V,Z	ínM,KnS,	KnY, KnM,KnS T.C,D,V,Z	WR3A 7 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

X000		[M 1]	[M2]	[S]	
	WR3A	K0	K1	D2	$\left - \right \right $
					-

Operation:

This instruction writes data to the FXoN-3A or FX2N-2DA analog block.

[M₁] = Special block number, K0 to K7

[M₂] = Analog output channel number, K1/K21 or K22 [S] = Write data

Points to note:

Adjustment of the FX0N-3A or FX2N-2DA analog block characteristics should be completed in advance of using this instruction. For guidance please see the relevant manual.

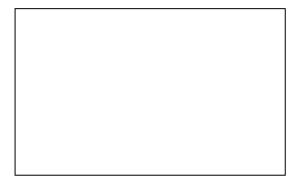
For the FX_{0N}-3A, K1 = Channel 1 (only 1 output channel available) $S = 0 \sim 255(8 \text{ bit})$ For the FX_{2N}-2DA, K21 = Channel 1, K22 = Channel 2

 $S = 0 \sim 4095(12bit)$

FX1N series can only communicate with the FX0N-3A

A	pplied	I Instruction	s:	FX _{1S}	FX1N	FX _{2N}	FX2NC
			_				
	1.	FNC 00 - 09	Program Flow				5-4
	2.	FNC 10 - 19	Move And Compare				5-16
	3.	FNC 20 - 29	Arithmetic And Logical	Opera	ations	(+, -,	×, ÷) 5-24
	4.	FNC 30 - 39	Rotation And Shift				5-34
	5.	FNC 40 - 49	Data Operation				5-42
	6.	FNC 50 - 59	High Speed Processing	9			5-52
	7.	FNC 60 - 69	Handy Instructions				5-66
	8.	FNC 70 - 79	External FX I/O Device	S			5-80
	9.	FNC 80 - 89	External FX Serial Dev	ices			5-94
	10.	FNC 110-129	Floating Point 1 & 2				5-110
	11.	FNC 130-139	Trigonometry (Floating	Point	3)		5-118
	12.	FNC 140-149	Data Operations 2				5-122
	13.	FNC 150-159	Positioning Control				5-126
	14.	FNC 160-169	Real Time Clock Contro	ol			5-136
	15.	FNC 170-179	Gray Codes				5-146
	16.	FNC 180-189	Additional Functions				5-146
-	17.	FNC 220-249	In-line Comparisons				5-150

Page


5-190

5.16 Additional Functions - FNC 180 to FNC 189

Contents:

EXTR - External ROM Function FNC 180

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D_1 , S_3 or for lists/tabled devices D_{3+0} , S_{+9} etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

- ななな An instruction operating in 16 bit mode, where ななな identifies the instruction mnemonic.
- ポポヤ- A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆ A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

5.16.1 EXTR (FNC 180)

FX1S FX1N FX2N FX2NC

Mnemonic	Function	Function Operands		Program steps
Millenionie	T direction	S	SD1 SD2 SD3	r rogram steps
EXTR FNC 180 (External ROM)	External ROM instruction, execution commands	К, Н,	K, H, KnX, KnY, KnM, KnS, T, C, D, V, Z, X, Y, M, S.	EXTR 9 steps DEXTR, DEXTRP 17 steps

16 BIT OPERATION

32 BIT OPERATION

PULSE-P

Operation:

S SD1 SD2 SD3

The value of S stored in the extension ROM (K0 to K32767) defines the function number and the instruction.

SD1, SD2 and SD3 are parameters of the application instruction. S or D varies depending on the function number. The type of operation (16 bit, 32 bit, pulse) is determined from the instruction number.

Points to Note:

In some function numbers, the parameters SD1 to SD3 may not be required due to specifications. In such a case K0 should be written in the program. K0 is ignored in the internal processing of the PLC.

As each of the external ROM cassettes (FX_{2N}-ROM-E1 and FX_{2NC}-ROM-CE1) attach to the memory port of an FX_{2N} or FX_{2NC} series PLC, both are equipped with a 16K step EEPROM. In addition, the FX_{2NC}-ROM-CE1 also contains a real-time clock.

Accordingly, the FX_{2N}-ROM-E1 and FX_{2NC}-ROM-CE1 are compatible as advanced units of the FX-EEPROM-16 and FX_{2NC}-EEPROM16C respectively.

The FX2N-ROM-E1 and FX2NC-ROM-CE1 are only operable with FX2N and FX2NC units of V3.00 or later

5.16.1.1 Inverter Communication

External ROM cassette functions 10 to 13 are for reading and writing data to/from an inverter using signal instructions. These functions are available when an FX_{2N}-485-BD or FX_{0N}-485ADP is attached to the PLC, for communication with a Mitsubishi Electric A500/E500/S500 series inverter.

Function No.	Function	Data Direction	Reference to Inverter manual
EXTR K10	Operation monitoring	INV to PLC	Execute operation control as for computer link, and
EXTR K11	Operation Control	PLC to INV	refer to 'monitoring' for communication functions.
EXTR K12	Parameter read	INV to PLC	Refer to the parameter code list in the relevant
EXTR K13	Parameter write	PLC to INV	manuals appendix.

5.16.1.1.1 Restrictions

Six digit commands that are supported in the E500 and S500 series inverters are not supported by the EXTR function.

5.16.1.1.2 Settings in the PLC

EXTR K10 to K13 use the FX_{2N}-485-BD or FX_{0N}-485ADP in the same way as the RS instruction (FNC 80). The communication conditions should be set in the 'Serial setting' parameter in FX-PCS/WIN-E or GX Developer.

When setting the Serial Parameters from the software packages FX-PCS/WIN-E or GX Developer, do not use data registers D8120, D8121, and D8129 in the user program. These registers are set by the software package and if changed in the user program will cause communication problems between the PLC and the Inverter.

For FX-PCS/WIN-E:

- 1) Select "Option" "Serial setting (Parameter)"
- 2) Click "Yes"
- 3) Set "Serial setting (Parameters)" as shown below

Serial setting (parameter)						
Protoco <u>l</u>	RS instruction					
<u>D</u> ata bits	7					
<u>P</u> arity	Even					
Stop <u>b</u> its	1	<u>H</u> elp				
Trans <u>f</u> er speed (bps)	9600	b				
H <u>e</u> ader	OFF	, <u>C</u> lear				
Te <u>r</u> minator	OFF					
Control l <u>i</u> ne	None					
Hard <u>w</u> are	RS-485	l c				
Control mode	None					
S <u>u</u> m check	No					
Control procedure	Format 1					
Station <u>n</u> umber	00 H	1				
Comm <u>s</u> timeout	<u> </u>	: 10ms				
Click the [Clear] button to clear the setting above. (When programming software transfer the program to the communication boards, click the [Clear] button and clear the special resistor D8120 in the PLC to "0".)						

- a) Set these parameters as show on the left.
 DO NOT select "Link"
- b) Select either 19200, 9600 or 4800. This value should be the same as set in the parameter of the inverter.
- c) These parameters do not affect communication with the inverter.

- For GX Developer
- 1) Select "Parameters"
- 2) Select "PLC Parameter"
- 3) Select "PLC System (2)" and set as shown below.

FX parameter	×
Memory capacity Device PLC name 1/0 assignm	ent PLC system(1) PLC system(2)
Operate If the box is not checked, the p	
Provide and the second	the program to the communication board, in the PLC must be cleard upon program transfer.)
setting parameters and DB120 values	
Piotocol	
Non-procedural 💌	Control line
- Data length	H/w/ type
7bit a	Regular/RS-232C
Parity	Control mode
Even	Invalid C
Stop bit	
	Sum check
D 9600 (bps)	- Trensmission control procedure
C Header C	Station number setting
Header C	00 H (00H-OFH)
	Time out judge time
Terminator	1 ×10ms (1255)
Default Check	End Cancel

- a) Set these parameters as show on the left. DO NOT select "Link"
 - b) Select either 19200, 9600 or 4800. This value should be the same as set in the inverter.
- c) These parameters do not affect communication with the inverter.

5.16.1.1.3 Inverter settings and PLC communication settings

Inverter communication specification and application to PLC

			Inverter specifications	Application to PLC
Transmission standard		Indard	RS-485	RS-485
Numb	per of conne	ected units	1:N (8 units maximum)	1:N (8 units maximum)
Comr	munication s	speed	19200, 9600 or 4800 bps (selectable)	19200, 9600 or 4800 bps (selectable)
Contr	ol procedur	е	Asynchronous system	Asynchronous system
Comr	Communication method Half duplex Half duplex		Half duplex	
	Character type		ASCII (7 or 8 bits) (selectable)	Fixed to 7 bits
	Stop bit length		1 or 2 bits (selectable)	Fixed to 1 bit
Communication specifications			CR/LF (absence/presence select- able)	Fixed to CR only
ommu specific	Check method	Parity check/	Fixed (even), fixed (odd) or not fixed (selectable)	Fixed to even parity
0 %	metriou	Sum check	Fixed	Fixed
	Waiting tin	ne setting	Set by customer	Set by communication data

Note:

Some of the specifications above are fixed in the PLC but variable in the inverter. This has been done to ease set up and reduce any possible problems during configuration.

For more information on the inverter, please see the appropriate inverter manual.

A500 series settings

Parameter number	Description	Set value	Contents	Setting for comms to PLC
117	Station No.	0~31	Corresponds to the station No. specified from the PU connector. If two or more inverters, set the station No. at each inverter	Align setting with station number in the sequence program
	O	48	4800bps	Normally select 192.
118	Communication speed	96	9600bps	If high speed processing in PLC
	opeed	192	19200bps	use 96 or 48
		0	8 data bits / 1 stop bit	
119	Stop bit length /	1	8 data bits / 2 stop bits	Select 10
113	Data bit length	10	7 data bits / 1 stop bit	
		11	7 data bits / 2 stop bits	
		0	Absent	
120	Parity check	1	Present (Odd)	Select 2
		2	Present (Even)	
		0,1~10	Set number of retries after data receive error. If this value is exceeded, inverter comes to alarm stop	
121	Number of communication retries	9999 (65535)	If a comms error occours, inverter will not come to alarm stop. At this time inverter can be coasted to stop by MRS or RES input. During comms. error, the LF signal is output to the open collector output. Allocate one terminal from Pr.190-195	During trial run select 9999 and perform adjustment. During actual operation select value in accordance with system specifications
		0	Comms not executed	
122*	Communication check time interval	0.1~999.8	Set comms check time interval. If a no-communication state persists for longer than the set time, inverter comes to alarm stop. See Note on page 195.	While default value 0 is selected, communications are disabled. Select 9999, perform adjustment, then select optimal value
		9999	Comms check suspended	
123	Waiting time	0~150	Set waiting time between data transmission and response	Select 9999
125	setting	9999	Waiting time set by communication data	
		0	CR & LF instructions absent	
124	CR,LF selection	1	CR instruction present	Select 1
		2	CR & LF instructions present	
342	E ² PROM write	0	Parameter write from computer to EEPROM	Select either value according to
0 12	selection	1	Parameter write from computer to RAM	system specifications

*A500	+	A5NR	settings
-------	---	------	----------

Parameter number	Name	Setting range	Setting increment	Inverter station No.	Setting for comms to PLC
331	Inverter station No.	0~31	1	0	Align setting with station number in the sequence program
332	Comms speed	3,6,12,24,48,9 6,192	1	96	Normally select 192. If high speed processing in PLC use 96 or 48
333	Stop bit length	0,1 (8 bit) 10,11 (7bit)	1	1	Select 10
334	Parity check yes/no	0,1,2	1	2	Select 2
335	Comms retry count	0~10, 9999	1	1	During trial run select 9999 and perform adjustment.
336	Comms check time interval	0~999.8, 9999	0.1	0	During actual operation select value in accordance with system specifications
337*	Wait time setting	0~150ms, 9999	1ms	9999	While default value 0 is selected, communications are disabled. Select 9999, perform adjustment, then select optimal value. See Note below.
338	Operation command write	0,1	1	0	Select either value in accordance to system specifications
339	Speed command write	0,1	1	0	Select either value in accordance to system specifications
340	Link start mode selection	0,1,2	1	0	Select either value in accordance to system specifications
341	CR/LF yes/no selection	0,1,2	1	1	Select 1 CR only
342	EEPROM write selection	0: write to EEPROM 1: write to RAM	1	0	Select either value in accordance to system specifications

*Note:

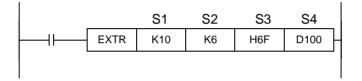
The time settings should be set as low as possible to avoid problems during a communication failure. The inverter will continue to run during the set time which may cause equipment damage or raise a safety issue. Please turn the inverter Off when communication problems are encountered.

E500 series settings

Parameter number	Description	Set value	Contents	Setting for comms to PLC		
117	Station No.	0~31	Corresponds to the station No. specified from the PU connector. If two or more inverters, set the station No. at each inverter	Align setting with station number in the sequence program		
	0	48	4800bps	Normally select 192.		
118	Communication speed	96	9600bps	If high speed processing in PLC		
	opeed	192	19200bps	use 96 or 48		
		0	8 data bits / 1 stop bit			
119	Stop bit length /	1	8 data bits / 2 stop bits	Select 10		
119	Data bit length	10	7 data bits / 1 stop bit	Select 10		
		11	7 data bits / 2 stop bits			
		0	Absent			
120	Parity check	1	Present (Odd)	Select 2		
		2	Present (Even)			
		0,1~10	Set number of retries after data receive error. If this value is exceeded, inverter comes to alarm stop			
121	Number of communication retries	9999 (65535)	If a comms error occours, inverter will not come to alarm stop. At this time inverter can be coasted to stop by MRS or RES input. During comms. error, the LF signal is output to the open collector output. Allocate one terminal from Pr.190-192	During trial run select 9999 and perform adjustment. During actual operation select value in accordance with system specifications		
		0	Comms not executed			
122*	Communication check time interval	0.1~999.8	Set comms check time interval. If a no-communication state persists for longer than the set time, inverter comes to alarm stop. See Note on page 195.	While default value 0 is selected, communications are disabled. Select 9999, perform adjustment, then select optimal value		
		9999	Comms check suspended			
123	Waiting time	0~150	Set waiting time between data transmission and response	Select 9999		
	setting	9999	Waiting time set by communication data			
		0	CR & LF instructions absent			
124	CR,LF selection	1	CR instruction present Select 1			
		2	CR & LF instructions present	1		

S500 series settings

Parameter number	Description	Set value	Contents	Setting for comms to PLC		
n1	Station No.	0~31	Corresponds to the station No. specified from the PU connector. If two or more inverters, set the station No. at each inverter	Align setting with station number in the sequence program		
	0	48	4800bps	Normally select 192.		
n2	Communication speed	96	9600bps	If high speed processing in PLC		
	opeed	192	19200bps	use 96 or 48		
		0	8 data bits / 1 stop bit			
n3	Stop bit length /	1	8 data bits / 2 stop bits	Select 10		
113	Data bit length	10	7 data bits / 1 stop bit	Select 10		
		11	7 data bits / 2 stop bits			
		0	Absent			
n4	Parity check	1	Present (Odd)	Select 2		
		2	Present (Even)			
		0,1~10	Set number of retries after data receive error. If this value is exceeded, inverter comes to alarm stop			
n5	Number of communication retries	9999 (65535)	If a comms error occours, inverter will not come to alarm stop. At this time inverter can be coasted to stop by MRS or RES input. During comms. error, the LF signal is output to the open collector output. Allocate one terminal from Pr.64-65	During trial run select 9999 and perform adjustment. During actual operation select value in accordance with system specifications		
		0	Comms not executed			
n6*	Communication check time interval	0.1~999.8	Set comms check time interval. If a no-communication state persists for longer than the set time, inverter comes to alarm stop. See Note on Page 195.	While default value 0 is selected, communications are disabled. Select 9999, perform adjustment, then select optimal value		
		9999	Comms check suspended			
n7	Waiting time	0~150	Set waiting time between data transmission and response	Select 9999		
	setting	9999	Waiting time set by communication data			
		0	CR & LF instructions absent			
n11	CR,LF selection	1	CR instruction present	Select 1		
		2	CR & LF instructions present			


Example of transmission format when data is written from PLC to inverter

ENQ	-	erter on 6		mand 30	Wait time =0		Data =	= 1234		SL	JM	CR
H05	H30	H36	H38	H30	H30	H31	H32	H33	H34	H43	H38	H0D

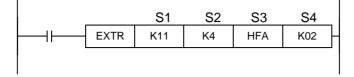
H30+H36+H38+H30+H30+H31+H32+H33+H34=H1<u>C8</u>

C=H43 8=H38

5.16.1.1.4 EXTR K10 - Monitoring operations (Inverter to PLC)

16 Bit Operation	✓
32 Bit Operation	×
Pulse - P	×

Parameter	Device type	Parameter range
S1	K/H	K10: function No. to monitor inverter operations
S2	KH, D	Inverter station number (0 to 31)
S3	KH, D	Inverter instructuion code (varies with model)
S4	D, KnY, KnM, KnS	Read value storage destination


Details of S3

Instruction Code	Monitor contents	A500	E500	S500	Data digits	Comms format
H7B	Operation mode	✓	~	\checkmark	4	B⇔E F
H6F	Output frequency	✓	✓	\checkmark	4	B⇔E F
H70	Output current	\checkmark	✓	\checkmark	4	B⇔E F
H71	Output voltage	✓	✓		4	B⇔E F
H72	Special monitor	✓			4	B⇔E F
H73	Special monitor selection No.	✓			2	B⇔E' ∣F
H74	Alarm definition	✓	✓	\checkmark	4	B⇔E F
H75	Alarm definition	✓	✓	\checkmark	4	B⇔E F
H76	Alarm definition	✓	✓		4	B⇔E F
H77	Alarm definition	✓	✓		4	B⇔E F
H7A	Inverter status monitor	✓	✓	\checkmark	2	B⇔E' ∣F
H6E	Set frequency read (EEPROM)			\checkmark	4	B⇔E F
H6D	Set frequency read (RAM)			\checkmark	4	B⇔E F
H00~H7B	Parameter read	✓	✓	\checkmark	4	B⇔E F
H7F	Link parameter	✓	✓	\checkmark	2	B⇔E' ∣F
H6C	Second parameter change	\checkmark	\checkmark	\checkmark	2	B⇔E' F

Note:

The shaded area is supported but is executed by EXTR K12.

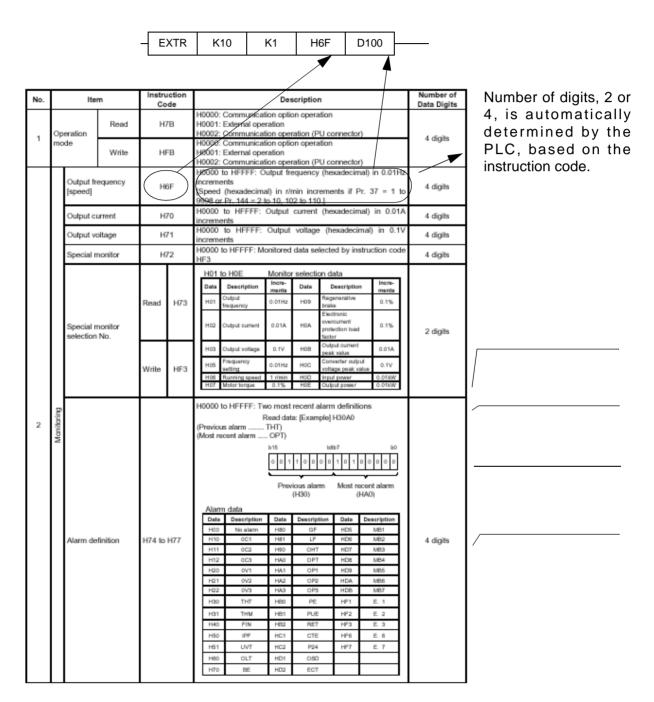
5.16.1.1.5 EXTR K11 - Control operations (PLC to Inverter)

16 Bit Operation	✓
32 Bit Operation	×
Pulse - P	×

Parameter	Device type	Parameter range
S1	K/H	K11: function No. to control inverter operations
S2	KH, D	Inverter station number (0 to 31)
S3	KH, D	Inverter instructuion code (varies with model)
S4	KH D, KnX, KnY, KnM, KnS	Value to be written to inverter

Details of S3

S3	Control contents	A500	E500	S500	Data digits	Comms format
HFB	Operation mode	~	\checkmark	~	4	A⇔C D
HF3	Special monitor selection No.	~			2	A'⇔C ∣D
HFA	Operation command	~	\checkmark	~	2	A'⇔C ∣D
HEE	Set frequency read (EEPROM)	~	\checkmark	\checkmark	4	A⇔C D
HED	Set frequency read (RAM)	~	\checkmark	~	4	A⇔C D
HFD	Inverter reset	~	\checkmark	~	4	A (no response)
HF4	Alarm definition batch clear	~		~	4	A⇔C D
HFC	All parameter clear	✓	\checkmark	\checkmark	4	A⇔C D
H80~HFD	Parameter write	✓	\checkmark	\checkmark	4	A⇔C D
HFC	User clear	~			4	A⇔C D
HFF	Link parameter extension setting	~	\checkmark	~	2	A'⇔C ∣D
HEC	Second parameter changing (code FF=1)	~	~	~	2	A'⇔C ∣D

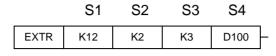

Note:

The shaded areas are re-written in the internal processing when EXTR K13 is executed.

5.16.1.1.6 Relationship between EXTR K10/K11 and A500/E500/S500 series

The page below is taken from section 4.2.41, paragraph 5 "Instructions for the program" <setting items and set data> in the FR A500 series instruction manual, IB(NA)-66790-G

The following example reads the Output Frequency from Inverter station #1 and stores this value to D100.


	EXT	R	K11	K1	HFA	K2M64]-					
					A							
No.	Item		Instructio Code		/	Descrip	tion		Number of Data Digits			
3	Run commar	ıd	HFA	[Example	rd rotation	b2:1 b3: b4: b5: b6: b6: b7:	Forward rotation	n (STR)	2 digits	For 2 seconds after the reset instruction is		
4	Inverter state monitor	в	HZA	[Exampl Durin [Exampl Stop	o o	1 0 b1: b2: b3: b4: b5: b6: b7:	Inverter running Forward rotatio Up to frequency Overload (OL) Instantaneous (failure (IPF) * Frequency dete Marm occurren 90 to Pr. 195 s	n (STF) n (STR) (SU) * xower ection (FU) * ce *	2 digits	transmitted, the inverter does not accept communication. As this period of time is controlled by the PLC,		
	Set frequence (E ² PROM) Set frequence	-	H6E H6D	Reads the H0000 to (hexade	he set frequenc o H9C40: 0.01H cimal)	y (RAM or E ² P tz increments	ROM).		4 digits	the sequence does not need to be taken into		
5	(RAM) Set frequence write (E ² PRC	ÓM)	HEE	(0 ≠ 400	o H9C40: 0.01F .00 Hz)			ata to the inverter	4 digits	consideration		
	Set frequence write (RAM)	:y	HED	RAM. (II	struction code: Resets the inve	HED)	davely, which a					
6	Inverter rese		HFD	As the in	rverter is reset cannot send rep	on start of con		the computer, the	4 digits			
7	Alarm definit batch clear	ION	HF4		Batch clear of a	,			4 digits			
8	All parameters return to the factory settings. Any of four different clear operations is performed according to the data. Pr. Communic cation Pr. Data Communic cation Pr. HECE HECE HECE O HECE O <t< td=""><td>HEC HF3 HF7 O O O 9966, to the factory</td><td>4 digits</td><td>Use EXTR K12/K13 to</td></t<>		HEC HF3 HF7 O O O 9966, to the factory	4 digits	Use EXTR K12/K13 to							
9	User clear		HFC		H9689: User clear is made. Communi- cation Pr. Cationation Other Pr.* HP3 HP3 HP7 HP7 HP7 O O O		5 values are not	4 dīgits	read and write parameters Before parameter read/			
10	Parameter w Parameter re		H80 to HE H00 to H6	Refer to	the data list (Ap	ppendix 1) and	write and/or re	ad parameter	4 digits	write, link parameters are		
	Link	Read	HUU IS HO	H00 to F H00: Pr. H01: Pr.	Values as required. Write, I H00 to H6C and H80 to HEC parameter values are changed. H00: Pr. 0 to Pr. 96 values are accessible. H00: Pr. 0 to Pr. 96 values are accessible. H00: Pr. 0 to Pr. 198. Pr. 200 to Pr. 231 and Pr. 900 to Pr. 905.				automatically re-written			
12	parameter expansion setting	Write	HFF	HI02: PT HI03: PT HI09: PT	Values are accessible. H02: At 160 b Pr. 199 and Pr. 232 to Pr. 287 values are accessible. H03: Pl. 300 to Pr. 342 values are accessible. When using the inboard optons. (When ptug-in option is fitted) H09: Pr. 90 and Pr. 99 values are accessible.			2 digits	If a second parameter is			
13			When s (data co paramet H H	etting the progr de H3D to H5 er 100: Time 101: Time 102: Rotation dir	ranimed opera iA, HBD to H rection	tion DA}	→ 6 3 3 B Time Minute (Minute) (Second)	2 digits	present, it is automatically re-written			
	(Code FF = 1)	Write	HEC	When setting the bias/gain (data/code H5E to H6A, HDE to HED) parameter								
		-[EXTR	K11	K1	HFC	K9696					

The following example writes the Run Command parameters to Inverter Station #1.

Note:

As parameters 9,10 11 and 12 are used for EXTR K12/13, DO NOT use them with EXTR K11/ K12.

5.16.1.1.7 EXTR K12 - Parameter read (Inverter to PLC)

16 Bit Operation	\checkmark
32 Bit Operation	×
Pulse - P	×

Parameter	Device type	Parameter range
S1	K/H	K12: function No. to read inverter parameters
S2	KH, D	Inverter station number (0 to 31)
S3	KH, D	Inverter instructuion code (varies with model)
S4	D, KnY, KnM, KnS	Value of storage destination

Link parameters are automatically re-written in accordance with the parameter No.

5.16.1.1.8 EXTR K13 - Parameter write (PLC to Inverter)

	S1	S2	S3	S4	
 EXTR	K13	K2	K3	K5600	<u> </u>

16 Bit Operation	✓
32 Bit Operation	×
Pulse - P	×

Parameter	Device type	Parameter range
S1	K/H	K13: function No. to write inverter parameters
S2	KH, D	Inverter station number (0 to 31)
S3	KH, D	Inverter instructuion code (varies with model)
S4	KH, D, KnX, KnY, KnM, KnS	Value to be written to inverter

Link parameters are automatically re-written in accordance with the parameter No.

5.16.1.1.9 Relationship between EXTR K12/K13 and A500/E500/S500 series

The following page is from the Data COD list of the FR A500 series instruction manual, IB(NA)-66790-G.

EXTR D**** K12 K(Station No.) K(Parameter No.) EXTR K13 K(station No.) K(Parameter No.) K**** EXTR K2 K12 K3 D100 EXTR K13 K2 K3 K5600

The following example displays how to read the parameter from the inverter.

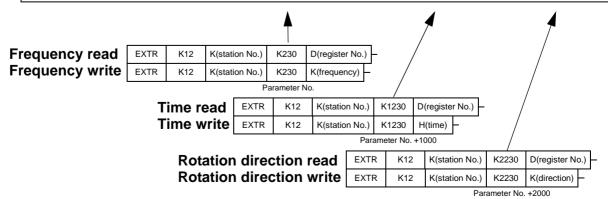
The following example displays how to write the parameter to the inverter.

The following example reads the Base Frequency from the 2nd inverter station and stores this value to D100.

The following example writes K5600 to the Base Frequency in the 2nd inverter station.

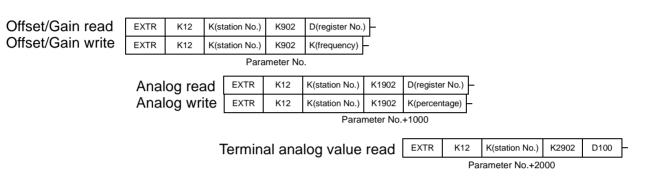
				Da	ta Codea
Func- tion	Parameter Number	Name	Read	Write	Link Parameter Extension Setting (Data code 7F/FF)
	Û	Torque boost	00	80	Û
	1	Maximum frequency	01	81	0
Ê		Minimum frequency	02	82	0
Basic functions	9	Base frequency	03	83	0
Ĕ)	Multi-speed setting (high speed)	04	84	Q
-8	5	Multi-speed setting (middle speed)	06	85 88	0
.8	5	Multi-speed setting (ow speed) Acceleration time	08	87	ů
-	8		08	ar 88	û
	9	Deceleration time Electronic thermal C/L relay	08	89	û
	10	DC injection brake operation frequency	04	8A	ů
- 1	11	DC injection brake operation time	08	88	0
	12	DC injection brake voltage	DC DC	80	ŭ
	13	Starting frequency	0D	80	ŭ
	- 14	Load pattern selection	0E	8E	0
	15	Jog frequency	0F	BF	0
	16	Jog acceleration/deceleration time	10	90	0
	17	MRS input selection	- 11	91	0
	18	High-speed maximum frequency	12	92	0
	19	Base frequency voltage	13	93	Û
E I	20	Acceleration/deceleration reference frequency	- 14	94	0
Ē	21	Acceleration/deceleration time increments	15	95	0
3	22	Stall prevention operation level	16	98	û
Randerd operation functions	23	Stall prevention operation level compensation factor at double speed	17	97	û
8	24	Multi-speed setting (speed 4)	18	98	0
'E	25	Multi-speed setting (speed 5)	19	99	û
-8	26	Multi-speed setting (speed 6)	1A	9A	û
10	27	Multi-speed setting (speed 7)	18	98	û
- 40	28	Multi-speed input compensation	1C	9C	0
	29	Acceleration/deceleration pettern	1D	90	0
	30	Regenerative function selection	1E	0E	0
	31	Frequency jump 1A	1F	9F	0
	32	Frequency jump 1B	20	A0	0
	33	Frequency jump 2A	21	A1	Û
	34 35	Frequency jump 2B	22	A2 A3	0
		Frequency jump SA	23	A4	-
	36	Frequency jump 3B	24	A4 A5	0
	41	Speed display	29	A5 A9	0 Q
Output terminal functions		Up-to-frequency sensitivity			
족분길	42	Output frequency detection	2A	AA	û
682	43	Output frequency detection for reverse rotation	2B	AB	û
12	44	Second acceleration/deceleration time	2C	AC	Û
- to	45	Second deceleration time	2D	AD	Û
E,	46	Second torque boost	2E	AE	0
Second functions	47	Second V/F (base frequency)	2F	AF	Û
8	48	Second stall prevention operation current	30	BO	0
8	40	Second stall prevention operation frequency	31	B1	0
	50 52	Second output frequency detection	32 34	B2 84	ů ů
~ 8		DUIPU main display data selection			-
0 splay functions	53	PU level display data selection	35	85	0
음길	54	FM terminal function selection	36	86	
0.2	55	Frequency monitoring reference	37	B7	0
	56 57	Current monitoring reference Restart coasting time	38 39	B8 B9	0
Rated output current		÷			
CC 57	58	Restart cushion time	AE	BA	0

The data is calculated by the PLC in accordance with the parameter.


No.	ltem		Instruction code	Description	Number of data digits
		Read	H6C	When setting the programmed operation (data code H3D to H5A, HBD to HDA)	
13	Second parameter changing (code FF=1)	Write	HEC	parameter H000: time H001: time H002: rotation direction When setting the bias/gain (data code H5E to H6A, HDE to HED) parameter H000: Offset/Gain H001: Analog H002: Analog value of terminal	2 digits

For parameters that require the setting of a second parameter. If a value of '+0', '+1000' or '+2000' is set to a parameter No. in the inverter manual, the second parameter will be automatically re-written before a general parameter read/write.

	Classification	Offset for parameter number		
	H00: Operation frequency	+0		
a)	H01: Time	+1000		
	H02: Rotation direction	+2000		
	H00: Offset / Gain	+0		
b)	H01: Analog	+1000		
	H02: Analog value of terminal	+2000		


Parameter No.	Name	Operation frequency read/write	Time read/write	Rotation direction read/write
201	Program set 1	201	1201	2201
202	Program set 1	202	1202	2202
203	Program set 1	203	1203	2203
204	Program set 1	204	1204	2204
205	Program set 1	205	1205	2205
206	Program set 1	206	1206	2206
207	Program set 1	207	1207	2207
208	Program set 1	208	1208	2208
209	Program set 1	209	1209	2209
210	Program set 1	210	1210	2210
211	Program set 2	211	1211	2211
212	Program set 2	212	1212	2212
213	Program set 2	213	1213	2213
214	Program set 2	214	1214	2214
215	Program set 2	215	1215	2215
216	Program set 2	216	1216	2216
217	Program set 2	217	1217	2217
218	Program set 2	218	1218	2218
219	Program set 2	219	1219	2219
220	Program set 2	220	1220	2220
221	Program set 3	221	1221	2221
222	Program set 3	222	1222	2222
223	Program set 3	223	1223	2223
224	Program set 3	224	1224	2224
225	Program set 3	225	1225	2225
226	Program set 3	226	1226	2226
227	Program set 3	227	1227	2227
228	Program set 3	228	1228	2228
229	Program set 3	229	1229	2229
230	Program set 3	230	1230	2230

Setting the third parameter of EXTR K12/K13 during programmed operation in the A500

Reading and writing the bias/gain in the A500/E500/S500

Parameter No.	Name	Offset/gain read/write	Analog read/write	Terminal analog value read
902	Frequency setting voltage bias	902	1902	2902
903	Frequency setting voltage gain	903	1903	2903
904	Frequency setting current bias	904	1904	2904
905	Frequency setting current gain	905	1905	2905

The following parameters CANNOT be used with EXTR K12/K13

n	ou				Dat	a code
Function	Parameter No.		Name	Read	Write	Link parameter extension set value (data code 7F/FF)
	-	Second parar	neter changing	6C	EC	-
	-	Frequency	Operation frequency (RAM)	6D	ED	-
	-	setting	Operation frequency (E ² PROM)	6E	EE	-
	-		Frequency monitoring	6F	-	-
	-	Monitoring	Output current monitoring	70	-	-
	-		Output voltage monitoring	71	-	-
	-		Special monitoring	72	-	-
	-		Special monitoring selection No.	73	F3	-
	-		Most recent No.1, No.2 / alarm display clear	74	F4	-
	-	Alarm display	Most recent No.3, No.4	75	-	-
	-	uispiay	Most recent No.5, No.6	76	-	-
	-		Most recent No.7, No.8	77	-	-
	-	Inverter status	s monitoring / run command	7A	FA	-
	-	Operation mode aquisition		7B	FB	-
	-	Parameter all	Parameter all clear		FC	-
	-	Inverter reset		-	FD	-
	-	Link paramete	er extension setting	7F	FF	-

Note:

Parameters 77 and 79 are accessible for computer link operation, but they are NOT available if a FR-A5NR is used as they need the PU connector.

• Definition of special D registers and special M coils

M8154	Offers debugging function.	D8154	Waiting time for a response from the inverter.
M8155	ON during communication, and OFF when communication is complete.	D8155	Step No. of the instruction which is executing a function related to the inverter. Stores '-1' while communication is not executed
M8156	Turns ON when a communication error occurs. Effective only just after the EXTR instruction is executed. When the next EXTR instruction is executed, M8156 is cleared.	D8156	Communication command error code. Updated when an error occurs in the EXTR instruction at the next time. Initialized to '-1' by STOP ⇔ RUN.
M8157	Turns ON when a communication error occurs (latch). Reset by STOP ⇔ RUN	D8157	Step No. in which a communication command error has occurred' (Latches the step No. which occurred for the first time after start of run.) Initialized to '-1' by STOP ⇔ RUN

D8154: Waiting time for response from the inverter
 If the inverter does not give a response within the time set here, after the PLC has transmitted a command, it is regarded as no response.
 When '0' is set to D8154, if the inverter does not give a response in 2 seconds, it is processed as an error.
 The value is set to D8154, multiplied by 0.1(s) is treated as the judgement time for no response.

- Use EXTR K10 (INV MON), K11 (INV CMD), K12 (RD PARAM) and K13 (WR PARAM) in accordance with the contents of read/write communication to/from the inverter.
- For EXTR K12/K13, the PLC automatically re-writes the link parameters in accordance with the parameter No.
 For parameters relating to a second parameter of the inverter, program them using the parameter No. adding by '+0', '+1,000' or '+2,000'.
- EXTR K10 to EXTR K13 repeatedly execute communication while the drive condition is ON.
- If two or more read instructions are driven at the same time, when the first is completed, next is automatically executed. The step No. being executed is stored in D8155.
- Communication start
 If communication is driven while the comms port is open, communication starts.
 If the drive condition turns OFF during communication, communication continues until it is completed. (The system will be adversley affected if communication is aborted by turning OFF the drive condition.)
- Debugging function by M8154 A standby time of 15 ms is assured after communication with the inverter is completed until next communication starts. While M8154 is ON, the standby time becomes 1,000 ms. By monitoring D8156, the user can confirm the step which is executing communication.

5.16.1.1.10 Consistency with other instructions

• STL instruction

During communication, if the executed state is set to OFF, the communication port is not open. As a result, communication is disabled.

- Branch instructions CJ and CJP During communication, if the EXTR instruction is skipped by a CJ or CJP instruction, the communication port is not open. As a result, communication is disabled.
- Description in subroutine

As the EXTR instruction requires the time of two or more operation cycles until execution is complete, it is prohibited to write a subroutine where the EXTR instruction is called twice or more in one operation cycle.

- Inside master control
 No problems are expected.
- FOR-NEXT It is prohibited to use an EXTR instruction together with a FOR-NEXT instruction.
- Description in interrupt It is prohibited to describe an EXTR instruction in any interrupt.
- Cautions on write during run

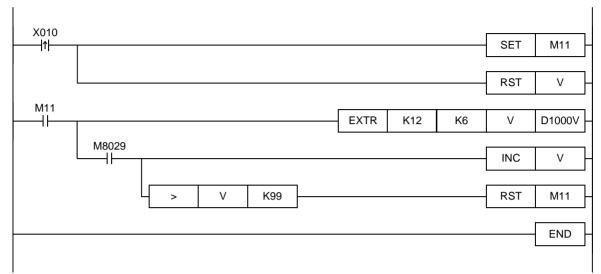
(1) It is prohibited to rewrite the function No. of theEXTR instructions first parameter.
(If the function No. is rewritten during run, a problem will occur in the same way as change in the application instruction No.)
(2) It is prohibited to delete an EXTR instruction.
(If the EXTR instruction is deleted during run, communication will be disabled.)

- Communication complete When communication is finished, the completion flag M8029 turns ON, without regard to the completion status (normal or abnormal). (M8029 turns ON for one calculation cycle at the time of completion. M8029 is used by manu instructions and therefore the ON/OFF status of M8029 is held only until the next instruction which utilizes M8029 is executed.)
- Communication error Communication is executed three times in total, including two retries. If communication is abnormally finished even after the third execution, it is regarded as an error. Error types are classified as follows.
- 1) When an error code is returned from the inverter
- 2) When the inverter does not give any response
- 3) When a response is given by an unspecified station
- 4) When a receive error (such as overrun, parity error and framing error) occurs
- 5) When M8063 turns ON and error code 6301 is set to D8067
- 6) When the check sum of the data returned by the inverter does not match

For 1), 2) & 3) M8156 is set to ON, and an error code is set to D8156.

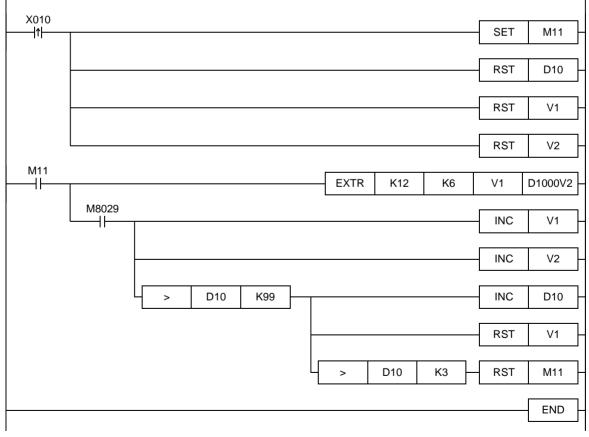
If a communication error occurs, it is cleared when the next EXTR K10/K11/K12/K13 is executed.

In general when an error occurs, M8157 turns ON and remains ON (latch) until it is set OFF.


5.16.1.1.11 Communication command error codes

The table below shows values set to D8156 after EXTR K10 K13 are executed.

D8155	Contents of error	Inverter operation
H0000	Communication is terminated normally (no error)	
H0001	The inverter does not give any response	
H0002	Timeout error interlocking with M8129. Error occurs when transmission from the inverter is aborted	
H0003	An unspecified station has given a response	
H0004	The sum of the data returned by the inverter does not match.	
H0005	In parameter read/write, parameters Nos. 400 to 899 are specified but cannot be supported. Sets error code 6702 into D8067.	
H006	The communication port is being used for another function and therefore cannot be used for the EXTR instruction. Sets error code 6702 into D8067.	
H0100	The inverter has transmitted the error code H0 - Computer NAK error. Communication request data includes an error beyond the permissible number of retries	If an error occurs beyond the permissible number
H0101	The inverter has transmitted the error code H1 - Parity error. The contents are different from the specified parity	of retries, the inverter will come to an alarm stop
H0102	The inverter has transmitted the error code H2 - Sum check error. The sum check code value in the computer is different to that of the inverter	
H0103	The inverter has transmitted the error code H3 - Protocol error. There is a grammar error in the data received by the inverter, data receive is not completed within the specified time, or the CR or LF is different from the parameter setting	
H0104	The inverter has transmitted the error code H4 - Framing error. The stop bit length is different from the default set value	
H0105	The inverter has transmitted the error code H5 - Overrun error. Data sent before previous receive transmission was complete.	
H0106	The inverter has transmitted the error code H6. Currently undefined	
H0107	The inverter has transmitted the error code H7 - Character error. An unused character (any character other than 0 to 9, A to F and control codes) is received	The inverter does not accept the data nor does it come to an alarm stop.
H0108	The inverter has transmitted the error code H8. Currently undefined	
H0109	The inverter has transmitted the error code H9. Currently undefined	
H010A	The inverter has transmitted the error code HA. This is a mode error. A parameter write was tried while the inverter was in operation or computer link mode was not selected.	The inverter does not accept the data nor does it come to
H010B	The inverter has transmitted the error code HB -Instruction code error. A non-existing instruction code is specified	an alarm stop.
H010C	The inverter has transmitted the error code HC -Data range error. In a parameter write, data outside the permissible setting range is specified. The inverter does not accept the data and an alarm does not occur	
H010D	The inverter has transmitted the error code HD. Currently undefined	
H010E	The inverter has transmitted the error code HE. Currently undefined	
H010F	The inverter has transmitted the error code HF. Currently undefined	


5.16.1.1.12 Example program 1

This program reads parameters 0 to 99 in the inverter at station No. 6, to D1000 to D1099 in the PLC.

5.16.1.1.13 Example program 2

This program reads parameters 0 to 99 in the inverters at station Nos. 6, 7, 8 and 9, to D1000 to D1099, D1100 to D1199, D1200 to D1299 and D1300 to D1399 respectively in the PLC.

- V Station No. control
- V1 Parameter No. control
- V2 Read parameter storage destination

5.16.1.1.14 Example program 3

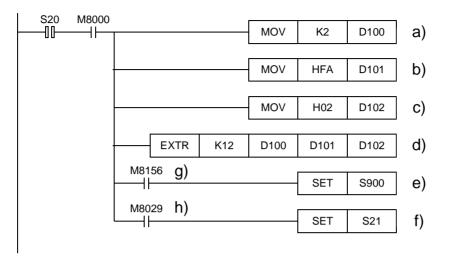
This program writes the speed parameter from PLC to inverter, performs forward rotation by input X1, and reverse rotation by input X2.

By re-writing D10 in the peripheral equipment or the display unit, the frequency of the inverter can be changed.

This program also monitors the frequency and output current in the inverter.

Program which	1							1
monitors the related special	M8000	1			MOV	D8154	D7990	Waiting time for response from inverter
devices from the personal computer						1		Step No. of
					MOV	D8155	D7791	- instruction currently executing
					MOV	D8156	D7992	Error code
		M8157			MOV	D8157	D7993	Step in which an error has occurred
	M8002	Writes parameters to the inverter at start			MOV	D0157	D1993	for the first time
						SET	M10	-
	M10		EXTR	K11	K6	H0FB	H0	Specifies computer link operation
			EXTR	K13	K6	K1	K1200	Maximum frequency
			EXTR	K13	K6	K2	K500	Minimum frequency
			EXTR	K13	K6	K4	K5980	Multi-speed setting (speed 3)
			EXTR	K13	K6	K5	K4980	Multi-speed setting (speed 2)
			EXTR	K13	K6	K6	K3980	Multi-speed setting (speed 1)
			EXTR	K13	K6	K7	K10	Acceleration time
			EXTR	K13	K6	K8	K10	Deceleration time
		M8029			I	RST	M10	Clears M10 when execution is
	M8002	Sets the default value of the frequency						complete
		Re-writes the frequency			MOV	K6000	D10	1
	M8000	Re-writes the nequency	EXTR	K11	K6	H0ED	D10	-
X1: Forward,	M8000	Gives commands to the inverter	EXTR	K11	K6	H0FA	K2X000	
X2: Reverse	M8000	Monitors the inverter			1	I		
			EXTR	K10	K6	H7A	K2Y000	Monitors status
			EXTR	K10	K6	H6F	D50	Monitors frequency
			EXTR	K10	K6	H70	D51	Monitors output current
			EXTR	K10	K6	H71	D52	Monitors output voltage
							END	
	1							1

5.16.1.1.15 Example program 4


In the previous example, monitoring and write to the inverter are always driven. If the program changes the frequency or gives a forward/reverse rotation command, communication with the inverter may be delayed depending on the step executing communication.

In the example below, when a request to write is generated, a request to read is interrupted, write is executed, then monitoring is continued again after write is completed.

Program which	M8000								
monitors the related special devices from						MOV	D8154	D7990	Waiting time for response from inverter
the personal computer						MOV	D8155	D7791	Step No. of instruction currently executing
						MOV	D8156	D7992	Error code
		M8157				MOV	D8157	D7993	Step in which error has occured for the first time
	M8002 V	Vrites param	eters to the inverte	er at start			SET	M10	
	M10	T		EXTR	K11	K6	H0FB	HO	Specifies computer link operation
				EXTR	K13	K6	K1		Maximum frequency
				EXTR	K13	K6	K2		Minimum frequency
				EXTR	K13	K6	K4	K5980	Multi-speed setting (3)
				EXTR	K13	K6	K5	K4980	Multi speed setting (2)
				EXTR	K13	K6	K6	K3980	Multi speed setting (1)
				EXTR	K13	K6	K7	K10	Acceleration time
				EXTR	K13	K6	K8	K10	Deceleration time
Free star with a burning		M8029					RST	M10	Clears M10 when execution complete
Executes write only when D10 has changed	M8002	Sets the defa	ult value of the fre	quency		MOV	K6000	D10	
		D10 D7998				MOV	D10	D7998	Withdraws to detect change
	M8002						SET	M11	Sets a request to write
	M11								
		M8029		EXTR	K11	K6	H0ED	D10	Writes the frequency
	Execute	└ <u></u>	inverter, only whe	on one of V		7 600	RST	M11	
		orward, X2: R			5 10 7	1 1185	change	eu	
	~	K2X000 D7999				MOV	2X000	D7999	Withdraws to detect change
	M8002						SET	M12	
	M12	1		EXTR	K11	K6	H0FA	K2X000	Gives a command to the inverter
		M8029					RST	M12	
		11						WITZ	
	Monito	rs the status,	only when nothing	g is written t	to the	inverte	er		
	#	}// /	ř			MC	N0	M50	
NO	M50								
	M8000			EXTR	K10	K6	H7A	K2Y000	Monitors the status
				EXTR	K10	K6	H6F	D50	Monitors the frequency
				EXTR	K10	K6	H70	D51	Monitors the output current
				EXTR	K10	K6	H71	D52	Monitors the output voltage
					_		MCR]
							IVIC K	N0	
								END	1

5.16.1.1.16 Example program 5

Example using the STL instruction

- a) Specifies station No. 2
- b) Instruction code for operation command
- c) Forward rotation command
- d) Transmits/receives a command to/from the inverter.
- e) Changes to the 'error processing' state as an error has occurred.
- f) Changes to the 'next' state as receive is normally finished.
- g) Receive is abnormally finished.
- h) Receive is complete.

5.16.1.1.17 Related Error Code Lists

PLC hardware error code list (M8061, D8061)

K6110	There is an abnormality in the extension ROM cassette.

Grammar error code list (M8065, D8065)

K6512 The FNC 180 is described while the extension ROM cassette is not mounted.

Operation error code list (M8067, D8067)

K6760	The sum of the value read by the ABS instruction does not match.
K6761	When FNC185 was executed, the extension memory cassette was not mounted. Or, the firmware of the function No. specified by the first parameter does not exist in the extension memory cassette.

MEMO

Applied Instructions: FX_{1S} FX1N FX_{2N} FX2NC **Program Flow** 1. 5-4 FNC 00 - 09 2. Move And Compare 5-16 FNC 10 - 19 Arithmetic And Logical Operations $(+, -, \times, \div)$ 3. FNC 20 - 29 5-24 **Rotation And Shift** 4. 5-34 FNC 30 - 39 5. **Data Operation** 5-42 FNC 40 - 49 6. High Speed Processing FNC 50 - 59 5-52 7. Handy Instructions FNC 60 - 69 5-66 External FX I/O Devices 8. FNC 70 - 79 5-80 9. **External FX Serial Devices** FNC 80 - 89 5-94 10. Floating Point 1 & 2 FNC 110-129 5-110 11. Trigonometry (Floating Point 3) FNC 130-139 5-118 12. **Data Operations 2** FNC 140-149 5-122 13. FNC 150-159 **Positioning Control** 5-126 14. FNC 160-169 Real Time Clock Control 5-136 **Gray Codes** 15. FNC 170-179 5-146 **Additional Functions** 16. FNC 180-189 5-146 **In-line Comparisons** 17. FNC 220-249 5-150

Page

5.17 Inline Comparisons - FNC 220 to FNC 249

Contents:

		0
LoaD compare	FNC 224 to 230	5-151
AND compare	FNC 232 to 238	5-152
OR compare	FNC 240 to 246	5-153
	AND compare	AND compare FNC 232 to 238

Symbols list:

D - Destination device.

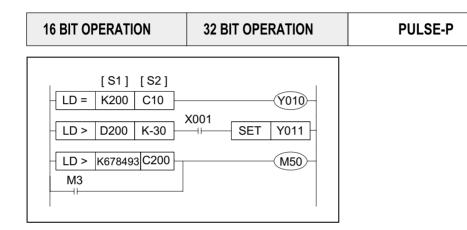
S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the same function e.g. D_1 , S_3 or for lists/tabled devices D_{3+0} , S_{+9} etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.


Instruction modifications:

- ななな An instruction operating in 16 bit mode, where ななな identifies the instruction mnemonic.
- ポポヤ- A 16 bit mode instruction modified to use pulse (single) operation.
- D☆☆☆ An instruction modified to operate in 32 bit operation.
- D☆☆☆ A 32 bit mode instruction modified to use pulse (single) operation.
- → A repetitive instruction which will change the destination value on every scan unless modified by the pulse function.
- ☑ An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or will have no effect to the value of the operand.

5.17.1 LD compare (FNC 224 to 230)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Oper	Program steps		
Millenionie	Tunction	S	D	Frogram steps	
LD	Initial comparison	K,H, KnX, KnY, KnM,	K,H, KnX, KnY, KnM,	LD :	
(LoaD	contact.	KnS, T, C, D, V, Z	KnS, T, C, D, V, Z	5 steps	
compare)	Active when the				
	comparison			DLD :	
where 🗖	S1 🗖 S2 is true.			9 steps	
is =, >, <,					
<>, ≤, ≥					

Operation:

The value of S_1 and S_2 are tested according to the comparison of the instruction. If the comparison is true then the LD contact is active. If the comparison is false then the LD contact is not active.

Points to note:

The LD comparison functions can be placed anywhere in a program that a standard LD instruction can be placed. I.e., it always starts a new block. (See page 2-3 for LD instruction)

FNC No.	Mnei	monic	Active	Inactive
THE NO.	16 bit	32 bit	when	when
224	LD =	DLD =	S1 = S2	S1 ≠ S2
225	LD >	DLD >	S1 > S2	$S_1 \leq S_2$
226	LD <	DLD <	S1 < S2	$S_1 \ge S_2$
228	LD <>	DLD <>	S1 ≠ S2	S1 = S2
229	LD ≤	DLD ≤	$S_1 \leq S_2$	S1 > S2
230	LD ≥	DLD ≥	$S_1 \ge S_2$	S1 < S2

5.17.2 AND compare (FNC 232 to 238)

FX1s FX1N FX2N FX2NC

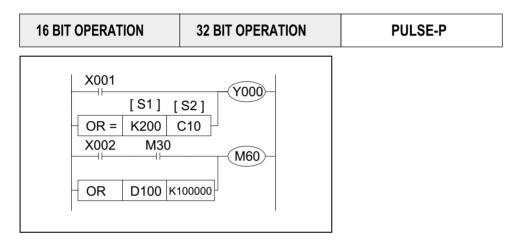
Mnemonic	Function	Oper	Program steps	
		S	D	Frogram steps
AND	Serial comparison	K,H, KnX, KnY, KnM,	K,H, KnX, KnY, KnM,	AND :
(AND	contact.	KnS, T, C, D, V, Z	KnS, T, C, D, V, Z	5 steps
compare)	Active when the			
	comparison			DAND:
where 🗖	S1 🗖 S2 is true.			9 steps
is =, >, <,				
<>, ≤, ≥				

16 BIT OPERATION	32 BIT OPERATION	PULSE-P
[S1 X000 AND = K20 X001 AND > K-1 X002 DAND> K678 M3	0 C10 Y010 0 D0 SET Y011	

Operation:

The value of S_1 and S_2 are tested according to the comparison of the instruction. If the comparison is true then the AND contact is active. If the comparison is false then the AND contact is not active.

Points to note:


The AND comparison functions can be placed anywhere in a program that a standard AND instruction can be placed. i.e., it is a serial connection contact. (See page 2-6 for AND instruction)

FNC No.	Mnemonic		Active	Inactive
FINC NO.	16 bit	32 bit	when	when
232	AND =	DAND =	S1 = S2	S1 ≠ S2
233	AND >	DAND >	S1 > S2	$S_1 \leq S_2$
234	AND <	DAND <	S1 < S2	$S_1 \ge S_2$
236	AND <>	DAND <>	S1 ≠ S2	S1 = S2
237	AND ≤	DAND ≤	$S_1 \leq S_2$	S1 > S2
238	AND ≥	DAND ≥	$S_1 \ge S_2$	S1 < S2

5.17.3 OR compare (FNC 240 to 246)

FX1s FX1N FX2N FX2NC

Mnemonic	Function	Oper	Program steps	
		S	D	Frogram steps
OR□	Parallel	K,H, KnX, KnY, KnM,	K,H, KnX, KnY, KnM,	OR⊡:
(OR compare)	comparison contact.	KnS, T, C, D, V, Z	KnS, T, C, D, V, Z	5 steps
	Active when the			DOR :
where 🗖	comparison			9 steps
is =, >, <,	S1 🗖 S2 is true.			
<>, ≤, ≥				

Operation:

The value of S_1 and S_2 are tested according to the comparison of the instruction. If the comparison is true then the OR contact is active. If the comparison is false then the OR contact is not active.

Points to note:

The OR comparison functions can be placed anywhere in a program that a standard OR instruction can be placed. i.e., it is a parallel connection contact. (See page 2-7 for OR instruction)

FNC No.	Mnemonic		Active	Inactive
	16 bit	32 bit	when	when
240	OR =	DOR =	S1 = S2	S1 ≠ S2
241	OR >	DOR >	S1 > S2	$S_1 \leq S_2$
242	OR <	DOR <	S1 < S2	$S_1 \ge S_2$
244	OR <>	DOR <>	S1 ≠ S2	S1 = S2
245	OR ≤	DOR ≤	$S_1 \leq S_2$	S1 > S2
246	OR ≥	DOR ≥	$S_1 \ge S_2$	S1 < S2

MEMO